Precalculus 115, section 1.1-1.4 Review of Basics

notes by Tim Pilachowski
Important note: This Lecture won't cover everything you will need from sections 1.1 through 1.4 - we'll only hit the highlights. Rely on your text for covering topics we don't cover.

section 1.1

What is a real number? What kinds of real numbers are there?

Examples A: Perform the following calculations.

1. $\left(5+\frac{1}{4}\right)\left(3-\frac{1}{6}\right)=$
2. $12 \div 4 * 3=$
3. $15-6+9=$

Please
Excuse
My Dear
Aunt Sally
Examples B: Perform the following calculations.

1. $\frac{9+6}{4-1}-5 * 2^{3}+7=$
2. $\left|\frac{3-7}{7-3}\right|=$

section 1.2

Examples C: First write what each of the following means, then evaluate to a numeric result or simplify as much as possible.

1. $2^{4}=$
2. $(2 a)^{4}=$
3. $2 a^{4}=$
4. $(-2)^{4}=$
5. $-2^{4}=$

Examples D: Evaluate each of the following.

1. $2^{0}=$

Why?
2. $2^{-4}=$

Why?
3. $2^{1 / 2}=$

Why?

Examples E: First write what each of the following means, then use your result to state a corresponding property of exponents.

1. $2^{3} * 2^{4}=$
exponent property:
2. $\left(2^{3}\right)^{4}=$
exponent property:
Examples F: Simplify each of the following, and explain why the two results are not the same.
3. $\sqrt[3]{x^{3}}=$
4. $\sqrt{x^{2}}=$

section 1.3

Example G: Evaluate $(x+2)^{2}$.

Example H: Factor $12 x^{2}-7 x-10$ by the "trial and error" method.

Example I: Factor $x^{3}-x^{2}-x+1$ by the "grouping" method.

Example H revisited: Factor $12 x^{2}-7 x-10$ by the "splitting the middle" method.

Example J: Factor $49 x^{2}-16 y^{2}$.
section 1.4
Example K: Simplify $\frac{x^{2}+6 x+9}{x^{2}+x-6} \div \frac{x^{2}-9}{x^{2}-4}$, then state the restrictions on the domain.

Example L: Subtract $\frac{4}{x^{2}-4}-\frac{5}{x^{2}+x-6}$, then state the restrictions on the domain.

Example M: Subtract $\frac{1}{x+1}-\frac{x-1}{x+1}$, then state the restrictions on the domain.

Important note: The equal symbol, " = ", can only be used when two expressions are mathematically equivalent. It should never be used to indicate "the next step in the process"!

Example N: A student's algebra work shown below is wrong. Rewrite it so that it is technically correct.

$$
2 x+3=4 x-5=-2 x=-8=x=4
$$

