Precalculus 115, section 2.1 Function Basics

notes by Tim Pilachowski
Examples A: Given the function $f(x)=2 x-3$, specify the domain then evaluate at the indicated values.

1. $f(0)=$

On the graph, we'd have the point
2. $f(-1)=$

On the graph, we'd have the point
3. $f(t)=$

Written in coordinate form, we'd have the point
4. $f(t+2)=$

Written in coordinate form, we'd have the point
Examples B: Given the function $g(x)=x^{2}-x$, specify the domain then evaluate at the indicated values.

1. $g(0)=$

On the graph, we'd have the point
2. $g(2)=$

On the graph, we'd have the point
3. $g(-2)=$

On the graph, we'd have the point
4. $g(t)=$

Written in coordinate form, we'd have the point
5. $g\left(\frac{3}{t+2}\right)=$

Written in coordinate form, we'd have the point
6. $g(-x)=$

Written in coordinate form, we'd have the point

Examples C: Given the function $h(t)=\frac{1}{2} t-\frac{1}{2 t}$, specify the domain then evaluate at the indicated values. 1. $h(1)=$

On the graph, we'd have the point
2. $h(-1)=$

On the graph, we'd have the point
3. $h(3)=$

On the graph, we'd have the point
4. $h\left(\frac{1}{3}\right)=$

On the graph, we'd have the point
5. $h(x)=$
6. $h\left(\frac{1}{x}\right)=$

Written in coordinate form, we'd have the point
Examples A revisited: Evaluate the function $f(x)=2 x-3$ at the indicated values.

1. $h(2 x)=$
2. $2 h(x)=$

Examples D: Find the domain of each of the functions below.

1. $f(x)=\frac{x^{2}-1}{x^{2}+5 x-6}$
2. $g(x)=\sqrt{5-4 x}$
3. $g(x)=\sqrt{15+2 x-x^{2}}$

Examples E: Find the domain of each of the functions below.

1. $y=\frac{t}{\sqrt{t+5}}$
2. $y=\frac{t}{\sqrt{t+5}-1}$
3. $y=\frac{t}{\sqrt{t}+5}$
4. $y=\frac{t}{\sqrt{t}-5}$
