Precalculus 115, section 2.1 Function Basics

notes by Tim Pilachowski

Examples A: Given the function f(x) = 2x - 3, specify the domain then evaluate at the indicated values.

1.
$$f(0) =$$

On the graph, we'd have the point

2. f(-1) =

On the graph, we'd have the point

3.
$$f(t) =$$

Written in coordinate form, we'd have the point

4. f(t+2) =

Written in coordinate form, we'd have the point

Examples B: Given the function $g(x) = x^2 - x$, specify the domain then evaluate at the indicated values. 1. g(0) =

On the graph, we'd have the point

2. g(2) =

On the graph, we'd have the point

3.
$$g(-2) =$$

On the graph, we'd have the point

4. g(t) =

Written in coordinate form, we'd have the point

5.
$$g\left(\frac{3}{t+2}\right) =$$

Written in coordinate form, we'd have the point

$$6. g(-x) =$$

Written in coordinate form, we'd have the point

Examples C: Given the function $h(t) = \frac{1}{2}t - \frac{1}{2t}$, specify the domain then evaluate at the indicated values. 1. h(1) =

On the graph, we'd have the point

2. h(-1) =

On the graph, we'd have the point

3. h(3) =

On the graph, we'd have the point

4. $h\left(\frac{1}{3}\right) =$

On the graph, we'd have the point

5.
$$h(x) =$$

Written in coordinate form, we'd have the point

6.
$$h\left(\frac{1}{x}\right) =$$

Written in coordinate form, we'd have the point

Examples A revisited: Evaluate the function f(x) = 2x - 3 at the indicated values. 1. h(2x) =

2. 2h(x) =

Examples D: Find the domain of each of the functions below.

1. $f(x) = \frac{x^2 - 1}{x^2 + 5x - 6}$

 $2. \ g(x) = \sqrt{5 - 4x}$

3.
$$g(x) = \sqrt{15 + 2x - x^2}$$

Examples E: Find the domain of each of the functions below.

1.
$$y = \frac{t}{\sqrt{t+5}}$$
 2. $y = \frac{t}{\sqrt{t+5}-1}$ 3. $y = \frac{t}{\sqrt{t+5}}$ 4. $y = \frac{t}{\sqrt{t-5}}$