Precalculus 115, section 2.3 Information from the Graph of a Function notes by Tim Pilachowski

Example A. The graph of a function $f(x)$ is given to the right below.

1) State the domain and range of f.
2) Find $f(-2), f(-1), f(2), f(4)$.
3) Identify the y-intercept.
4) Identify the x-intercepts.
5) Find the values of x for which $f(x) \geq 0$.

6) Find the values of x for which $f(x) \leq 0$.
7) Determine the interval(s) on which f is increasing.
8) Determine the interval(s) on which f is decreasing.

Example B. The graph of a function $g(x)$, as seen on a graphing utility, is given to the right below.

1) Find all local maximum values of g and identify the value of x at which each occurs.
2) Find all local minimum values of g and identify the value of x at which each occurs.
3) Determine the interval(s) on which g is increasing.
4) Determine the interval(s) on which g is decreasing.

Example C. The graph of a function $h(x)$, as seen on a graphing utility, is given to the right below.

1) Find all local maximum values of h and identify the value of x at which each occurs.
2) Find all local minimum values of h and identify the value of x at which each occurs.
3) Determine the interval(s) on which h is increasing.
4) Determine the interval(s) on which h is decreasing.

Example D. The graph of a function $m(x)$, as seen on a graphing utility, is given to the right below.

1) Find all local maximum values of m and identify the value of x at which each occurs.
2) Find all local minimum values of m and identify the value of x at which each occurs.
3) Determine the interval(s) on which m is increasing.
4) Determine the interval(s) on which m is decreasing.

