Precalculus 115, section 3.1 Quadratic Functions

notes by Tim Pilachowski

 terminology: The standard, or graphing form, of a quadratic function is $y=a(x-h)^{2}+k$. Using this form we can identify the shifts/translations of the basic function $y=x^{2}$. The reference (vertex) of the basic quadratic, the point $(0,0)$, would be shifted \qquad units \qquad , and \qquad units \qquad .Thus, the shifted vertex would have coordinates (\qquad , \qquad)

Example A: Sketch the graph of $f(x)=x^{2}-4 x$. vertex:
standard (graphing) form:
domain:
range:
maximum/minimum value of the function:
axis of symmetry:
y-intercept:
x-intercept(s):

Example B: Sketch the graph of $g(x)=-x^{2}+6 x-3$. vertex:
standard (graphing) form:
domain:
range:
maximum/minimum value of the function:
axis of symmetry:
y-intercept:
x-intercept(s):

Example C: Find a function whose graph is a parabola with vertex $(-4,6)$ and that passes through the point $(-2,2)$.

								,							

