Precalculus 115, section 3.7 Rational Functions

notes by Tim Pilachowski

 $\frac{\text{polynomial}}{\text{polynomial}} \text{ rational expression.}$ Definition: A rational function is a function that can be expressed as a

Where would the domain of a rational function be restricted?

When considering the graph of a rational function, we'll be looking for asymptotes, both vertical and horizontal.

Example A: Sketch the graph of $f(x) = \frac{x}{x-3}$.

domain:

vertical asymptote(s):

horizontal asymptote(s):

y-intercept:

x-intercepts:

L

For this class, we'll focus on getting a sketch of the graph, i.e. having the general shape. For quizzes and exams, you'll need to have the correct asymptotes (labeled with their equations), along with y-intercepts and x-intercepts (labeled with their coordinates), and correct placement above or below the x-axis and asymptotes.

Example B: Sketch the graph of $f(x) = \frac{2}{x^2 - 2x - 3}$.							
domain:							
vertical asymptote(s):							
horizontal asymptote(s):							
nonzontal asymptote(s).							
nonzontar asymptote(s).							
y-intercept:							

Example C: Sketch the graph of $f(x) = \frac{-2x}{x^2 - 2x - 3}$.								
domain:			 					
			 		 	 	_	
vertical asymptote(s):			 			 		_
vorticul usymptote(s).			 					_
horizontal asymptote(s):			 					
nonzontal asymptote(s).								
y-intercept:			 					
x-intercepts:								

Example D: Sketch the graph of $f(x) = \frac{2x^2 - 8}{x^2 - 2x - 3}$. domain:

vertical asymptote(s):

horizontal asymptote(s):

y-intercept:

x-intercepts:

						1
						Γ
						Γ
						Γ
						Г

Example E: Sketch the graph of $f(x) = \frac{x^4}{x^2 - 2x - 3}$.							
domain:							
vertical asymptote(s):			 				
horizontal asymptoto(a);							
horizontal asymptote(s):							
							_
y-intercept:							
			 	 	 		_
x-intercepts:							

For this class, you won't be asked to find the equations of any slant asymptotes, but the shape of your graph should indicate occasions when one is present.