Precalculus 115, sections 4.1 Exponential Functions

notes by Tim Pilachowski
Take a piece of paper, and fold it in half. You've doubled the number of layers-from 1 to 2 . Fold it in half again, and you've once again doubled the layers-from 2 to 4 . After the next fold you'd have 8 layers. After the next, 16. Then 32. Then $64,128,256,512,1024$, etc. After just 10 foldings, we have the paperback edition of just the first volume of Lord of the Rings that we're attempting to fold in half.

When x is the base, we have a power function. When x is the exponent we have an exponential function. The scenario above illustrates the exponential function $y=2^{x}$.

If we compare the graph of $y=x^{2}$ to the graph of $y=2^{x}$, we can see that for positive values of x the exponential function grows much more quickly than the power function. (Thus our difficulty in folding a piece of paper in half successive times.)

Exponential functions have many applications because they model many kinds of growth and shrinking: e.g. populations, bank deposits, radioactive decay.

All of the usual properties apply to exponential functions:

$$
b^{x} * b^{y}=b^{x+y} \quad \frac{b^{x}}{b^{y}}=b^{x-y} \quad \frac{1}{b^{y}}=b^{0-y}=b^{-y} \quad\left(b^{x}\right)^{y}=b^{x y} \quad a^{x} * b^{x}=(a b)^{x} \quad \frac{a^{x}}{b^{x}}=\left(\frac{a}{b}\right)^{x} .
$$

Functions with the basic form $y=b^{x}$ are actually a family of functions. We'll consider only values for b that are positive. (Negative values of b are extremely problematic, since even and odd values of x would cause y to fluctuate between positive and negative.)

Consider the functions $y=10^{x}, y=5^{x}, y=3^{x}, y=2^{x}$, and $y=1.1^{x}$ pictured in the graph to the right. The graphs also have similar shape-the major difference is slope/steepness of the curve at specific values of x. Note that for $x>0$ slope of $y=10^{x}$ is steepest; slope of $y=1.1^{x}$ is most shallow.

Since $b^{0}=1$ for all values of $b \neq 0$, so $(0,1)$ makes a good reference point, no matter what number we have as the base of our exponential function.

Note also that each of the basic exponential functions has a horizontal asymptote $y=0$.

When we're graphing exponential functions, we'll start by shifting the reference point and horizontal asymptote. On the way, we'll find y - and x-intercepts where they exist.

Example A: Sketch the graph of $f(x)=2^{x+3}-4$.

Example B: Sketch the graph of $f(x)=-2^{x+3}-4$.

Example C: Find the exponential function $f(x)=a^{x}$ whose graph is given below.

					I				
					,				
					,				
						(1,4)			
			$(0,1)$						
			1						

