Precalculus 115, sections 4.1 Exponential Functions

notes by Tim Pilachowski

Take a piece of paper, and fold it in half. You've doubled the number of layers—from 1 to 2. Fold it in half again, and you've once again doubled the layers—from 2 to 4. After the next fold you'd have 8 layers. After the next, 16. Then 32. Then 64, 128, 256, 512, 1024, etc. After just 10 foldings, we have the paperback edition of just the first volume of *Lord of the Rings* that we're attempting to fold in half.

When x is the base, we have a *power function*. When x is the exponent we have an *exponential function*. The scenario above illustrates the exponential function $y = 2^x$.

If we compare the graph of $y = x^2$ to the graph of $y = 2^x$, we can see that for positive values of x the exponential function grows much more quickly than the power function. (Thus our difficulty in folding a piece of paper in half successive times.)

Exponential functions have many applications because they model many kinds of growth and shrinking: e.g. populations, bank deposits, radioactive decay.

All of the usual properties apply to exponential functions:

$$b^{x} * b^{y} = b^{x+y} \qquad \frac{b^{x}}{b^{y}} = b^{x-y} \qquad \frac{1}{b^{y}} = b^{0-y} = b^{-y} \qquad \left(b^{x}\right)^{y} = b^{xy} \qquad a^{x} * b^{x} = (ab)^{x} \qquad \frac{a^{x}}{b^{x}} = \left(\frac{a}{b}\right)^{x}$$

Functions with the basic form $y = b^x$ are actually a family of functions. We'll consider only values for *b* that are positive. (Negative values of *b* are extremely problematic, since even and odd values of *x* would cause *y* to fluctuate between positive and negative.)

Consider the functions $y = 10^x$, $y = 5^x$, $y = 3^x$, $y = 2^x$, and $y = 1.1^x$ pictured in the graph to the right. The graphs also have similar shape—the major difference is slope/steepness of the curve at specific values of x. Note that for x > 0 slope of $y = 10^x$ is steepest; slope of $y = 1.1^x$ is most shallow.

Since $b^0 = 1$ for all values of $b \neq 0$, so (0, 1) makes a good reference point, no matter what number we have as the base of our exponential function.

Note also that each of the basic exponential functions has a horizontal asymptote y = 0.

When we're graphing exponential functions, we'll start by shifting the reference point and horizontal asymptote. On the way, we'll find *y*- and *x*-intercepts where they exist.

_	\vdash						\square					\vdash		Η							
_														\square		_					
_	\vdash						\square					\vdash		\vdash		_				\square	_
-	\vdash						\vdash					\vdash	-	Η		-		\vdash		\square	-
_	\vdash						\square					\vdash	_	\vdash	_	_	_			-	_
_	\vdash						\vdash					\vdash	_	\vdash	_	_				\square	_
_																					
_																_	_				_

Example A: Sketch the graph of $f(x) = 2^{x+3} - 4$.

Example B: Sketch the graph of $f(x) = -2^{x+3} - 4$.

Example C: Find the exponential function $f(x) = a^x$ whose graph is given below.

