Precalculus 115, section 4.2 Exponential Function e^X section 4.3a Introduction to Logarithms

notes by Tim Pilachowski

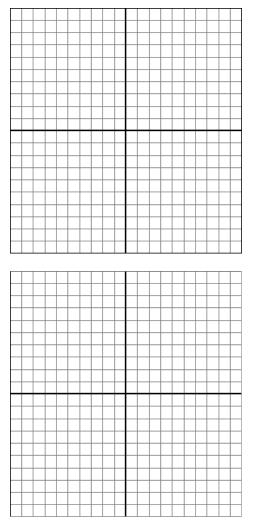
Recall now a point made in Lecture 4.1, exponential functions are a family, with the same basic shape, but different levels of steepness. At x = 0, the graph of $y = 10^x$ is the steepest; the graph of $y = 1.1^x$ is most shallow. Somewhere in that family must be a base for which the slope of a line tangent to the curve at the point (0, 1) is exactly 1. This number is *e*, Euler's number. Like π or $\sqrt{2}$, *e* is an irrational number. The value of *e* is *approximately* 2.7. (One decimal place will be sufficient for our purposes.) The corresponding function, $y = e^x$, is called the natural exponential function.

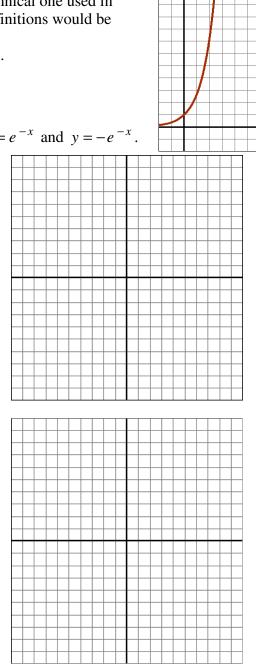
The "definition" of the number e given above is a non-technical one used in Math 220: Calculus with Applications. More technical definitions would be

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$
 and $e = \sum_{n=0}^{\infty} \frac{1}{n!}$

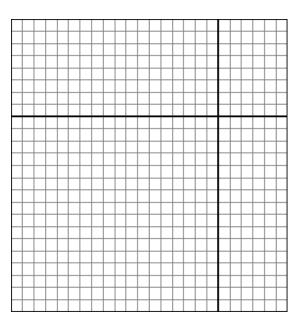
You'll run across both of these in Math 141.

Example A: Compare the graphs of $y = e^x$, $y = -e^x$, $y = e^{-x}$ and $y = -e^{-x}$.





Example B: Sketch the graph of $f(x) = -e^{x-3} + 1$.



section 4.3a

Definition: A logarithm function is the inverse to an exponential function. Specifically,

$$\log_b (x) = n \iff b^n = x$$
.
logarithmic form exponential form

Because logarithm functions and exponential functions are inverses of each other, they exhibit a property which will be very useful to us in evaluating, simplifying, and solving. Given $f(x) = \log_b (x)$ and $g(x) = b^x$, it will always be true that $f \circ g = \log_b (b^x) = x$ and $g \circ f = b^{\log_b (x)} = x$.

Examples C. Evaluate each of the following logarithms.

1.
$$\log_2(4)$$
 2. $\log_2\left(\frac{1}{8}\right)$ 3. $\log_{\frac{1}{2}}(8)$ 4. $\log_2(1)$

5.
$$\log_4(2)$$
 6. $\log_4(32)$ 7. $\log_4(\sqrt{2})$ 8. $\log_{\sqrt{2}}(16)$

Examples D. Evaluate each of the following logarithms.

1.
$$\log(100)$$
 2. $\log(0.0001)$ 3. $\ln(e^5)$ 4. $\ln(\sqrt[3]{e^7})$