Precalculus 115, section 4.2 Exponential Function e^{x} section 4.3a Introduction to Logarithms

 notes by Tim PilachowskiRecall now a point made in Lecture 4.1, exponential functions are a family, with the same basic shape, but different levels of steepness. At $x=0$, the graph of $y=10^{x}$ is the steepest; the graph of $y=1.1^{x}$ is most shallow. Somewhere in that family must be a base for which the slope of a line tangent to the curve at the point $(0,1)$ is exactly 1 . This number is e, Euler's number. Like π or $\sqrt{2}, e$ is an irrational number. The value of e is approximately 2.7. (One decimal place will be sufficient for our purposes.) The corresponding function, $y=e^{x}$, is called the natural exponential function.

The "definition" of the number e given above is a non-technical one used in Math 220: Calculus with Applications. More technical definitions would be

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \text { and } e=\sum_{n=0}^{\infty} \frac{1}{n!} .
$$

You'll run across both of these in Math 141.
Example A: Compare the graphs of $y=e^{x}, y=-e^{x}, y=e^{-x}$ and $y=-e^{-x}$.

Example B: Sketch the graph of $f(x)=-e^{x-3}+1$.

section 4.3a

Definition: A logarithm function is the inverse to an exponential function. Specifically,

$$
\begin{aligned}
\log _{b}(x)=n & \Leftrightarrow \\
\text { logarithmic form } & b^{n}=x \\
& \text { exponential form }
\end{aligned}
$$

Because logarithm functions and exponential functions are inverses of each other, they exhibit a property which will be very useful to us in evaluating, simplifying, and solving. Given $f(x)=\log _{b}(x)$ and $g(x)=b^{x}$, it will always be true that $f \circ g=\log _{b}\left(b^{x}\right)=x$ and $g \circ f=b^{\log _{b}(x)}=x$.

Examples C. Evaluate each of the following logarithms.

1. $\log _{2}(4)$
2. $\log _{2}\left(\frac{1}{8}\right)$
3. $\log _{\frac{1}{2}}(8)$
4. $\log _{2}(1)$
2
5. $\log _{4}(2)$
6. $\log _{4}(32)$
7. $\log _{4}(\sqrt{2})$
8. $\log _{\sqrt{2}}(16)$

Examples D. Evaluate each of the following logarithms.

1. $\log (100)$
2. $\log (0.0001)$
3. $\ln \left(e^{5}\right)$
4. $\ln \left(\sqrt[3]{e^{7}}\right)$
