Precalculus 115, section 4.4 Logarithm Properties

notes by Tim Pilachowski

Recall the properties of exponential functions:

$$b^{x} * b^{y} = b^{x+y} \qquad \frac{b^{x}}{b^{y}} = b^{x-y} \qquad \frac{1}{b^{y}} = b^{0-y} = b^{-y} \qquad \left(b^{x}\right)^{y} = b^{xy} \qquad a^{x} * b^{x} = (ab)^{x} \qquad \frac{a^{x}}{b^{x}} = \left(\frac{a}{b}\right)^{x}$$

Logarithm functions, and in particular the *natural logarithm* function, $y = \ln x$, have properties of their own, related to but not exactly the same as the exponential function properties. The logarithm properties apply to logarithms in any base, including $\ln(x)$. Of the three properties listed in the text, two are vital. The other one can be easily derived from these.

$$\log_b(AB) = \log_b(A) + \log_b(B) \qquad \log_b(A^C) = C \log_b(A)$$

To prove the first: Note that $e^{\ln(AB)} = AB$. But since $A = e^{\ln A}$ and $B = e^{\ln B}$, we can use the properties of exponents to write $e^{\ln(AB)} = A * B = e^{\ln A} * e^{\ln B} = e^{\ln A + \ln B}$. Since the exponents must be equal, we're done. [We used $\ln(AB)$. This proof as well as the one below can be easily duplicated for logarithms in any base *b*.]

Proof of the second vital property is along similar lines: $e^{\ln(A^C)} = A^C = (e^{\ln A})^C = e^{C*\ln A}$.

Knowing that $\frac{1}{B} = B^{-1}$, the other property given by the text becomes fairly obvious:

$$\ln \frac{A}{B} = \ln (AB^{-1}) = \ln A + \ln (B^{-1}) = \ln A - \ln B$$

Example A: Simplify $\ln 60 - \ln 4 - \ln 5$.

Example B: Evaluate $\log_5(25^{97})$.

Example C: Evaluate $\log_3 \left[3 \ln(e^9) \right]$.

Example D: Simplify
$$e^{3\ln 5 - \frac{1}{3}\ln 8}$$

Example E: Using properties of logarithms, expand and simplify $\log_5 \left(\frac{125a^3}{b^4 \sqrt[5]{c}} \right)$.

Example F: Using properties of logarithms, expand and simplify $\ln(x^2e^x)$.

Example G: Using properties of logarithms, expand $\log_3 \left[\frac{3^{x+1}}{(3x+7)^5 \sqrt{x^2-5}} \right]$.

Be careful when using the logarithm properties! They *do not* allow us to expand this example any more—the properties apply when a product or quotient is inside the logarithm, but *not* when there is a sum or difference.

One more logarithm property: the change of base formula: $\log_b(x) = \frac{\ln x}{\ln b}$.

To prove the change of base formula: Note that $y = \log_b x$ can be written in its exponential form $b^y = x$. Taking ln of both sides gives us $\ln(b^y) = \ln x \implies y \ln b = \ln x \implies y = \frac{\ln x}{\ln b}$ (= $\log_b x$). For this class, we'll use the change of base formula mostly to approximate the placement of *y*- and *x*-intercepts.

Example H: Use the change of base formula to approximate $\log_7(30)$.