Precalculus 115, section 4.4 Logarithm Properties

notes by Tim Pilachowski
Recall the properties of exponential functions:
$b^{x} * b^{y}=b^{x+y} \quad \frac{b^{x}}{b^{y}}=b^{x-y} \quad \frac{1}{b^{y}}=b^{0-y}=b^{-y} \quad\left(b^{x}\right)^{y}=b^{x y} \quad a^{x} * b^{x}=(a b)^{x} \quad \frac{a^{x}}{b^{x}}=\left(\frac{a}{b}\right)^{x}$.
Logarithm functions, and in particular the natural logarithm function, $y=\ln x$, have properties of their own, related to but not exactly the same as the exponential function properties. The logarithm properties apply to logarithms in any base, including $\ln (x)$. Of the three properties listed in the text, two are vital. The other one can be easily derived from these.

$$
\log _{b}(A B)=\log _{b}(A)+\log _{b}(B) \quad \log _{b}\left(A^{C}\right)=C \log _{b}(A)
$$

To prove the first: Note that $e^{\ln (A B)}=A B$. But since $A=e^{\ln A}$ and $B=e^{\ln B}$, we can use the properties of exponents to write $e^{\ln (A B)}=A * B=e^{\ln A} * e^{\ln B}=e^{\ln A+\ln B}$. Since the exponents must be equal, we're done. [We used $\ln (A B)$. This proof as well as the one below can be easily duplicated for logarithms in any base b.]

Proof of the second vital property is along similar lines: $e^{\ln \left(A^{C}\right)}=A^{C}=\left(e^{\ln A)^{C}}=e^{C * \ln A}\right.$.
Knowing that $\frac{1}{B}=B^{-1}$, the other property given by the text becomes fairly obvious:

$$
\ln \frac{A}{B}=\ln \left(A B^{-1}\right)=\ln A+\ln \left(B^{-1}\right)=\ln A-\ln B .
$$

Example A: Simplify $\ln 60-\ln 4-\ln 5$.

Example B: Evaluate $\log _{5}\left(25^{97}\right)$.

Example C: Evaluate $\log _{3}\left\lfloor 3 \ln \left(e^{9}\right)\right\rfloor$.

Example D: Simplify $e^{3 \ln 5-\frac{1}{3} \ln 8}$.

Example E: Using properties of logarithms, expand and simplify $\log _{5}\left(\frac{125 a^{3}}{b^{4} \sqrt[5]{c}}\right)$.

Example F: Using properties of logarithms, expand and simplify $\ln \left(x^{2} e^{x}\right)$.

Example G: Using properties of logarithms, expand $\log _{3}\left[\frac{3^{x+1}}{(3 x+7)^{5} \sqrt{x^{2}-5}}\right]$.

Be careful when using the logarithm properties! They do not allow us to expand this example any more-the properties apply when a product or quotient is inside the logarithm, but not when there is a sum or difference.

One more logarithm property: the change of base formula: $\log _{b}(x)=\frac{\ln x}{\ln b}$.
To prove the change of base formula: Note that $y=\log _{b} x$ can be written in its exponential form $b^{y}=x$.
Taking \ln of both sides gives us $\ln \left(b^{y}\right)=\ln x \Rightarrow y \ln b=\ln x \Rightarrow y=\frac{\ln x}{\ln b}\left(=\log _{b} x\right)$.
For this class, we'll use the change of base formula mostly to approximate the placement of y - and x-intercepts.
Example H : Use the change of base formula to approximate $\log _{7}(30)$.

