Precalculus 115, section 5.4 More Graphs of Trigonometric Functions

 notes by Tim PilachowskiSince $\csc t=\frac{1}{\sin t}$, the graphs of $y=\sin t$ and $y=\operatorname{cosecant} t$ are closely related.
Wherever sine t equals 0 , the graph of $y=\csc t$ has a vertical asymptote.

As sine t approaches 0 , the graph of $y=\csc t$ will go up or down along a vertical asymptote.

Wherever sine t equals 1, the graph of $y=\csc t$ will also have a
y-coordinate equal to 1 . Wherever $y=\sin t$ has a maximum, the graph of $y=\csc t$ will have a minimum.
Wherever sine t equals -1 , the graph of $y=\csc t$ will also have a y-coordinate equal to -1 . Wherever $y=\sin t$ has a minimum, the graph of $y=\csc t$ will have a maximum.

Note that maxima and minima are exactly halfway between asymptotes. Also note that asymptotes are exactly halfway between a maximum and a minimum.

My suggestion is that you draw the associated sine graph first, next insert the necessary vertical asymptotes, then put maxima and minima in place, and finally draw the curve.

Example A: Sketch the graph of $y=\csc \left(3 x-\frac{\pi}{2}\right)$. (Note that the x-axis is scaled by $\pi / 2$.)

Since $\sec t=\frac{1}{\cos t}$, the graphs of $y=\cos t$ and $y=\operatorname{secant} t$ are closely related.
Wherever cosine t equals 0 , the graph of $y=\sec t$ has a vertical asymptote.
As cosine t approaches 0 , the graph of $y=\sec t$ will go up or down along a vertical asymptote.
Wherever cosine t equals 1, the graph of $y=\sec t$ will also have a y-coordinate equal to 1 . Wherever $y=\cos t$ has a maximum, the graph of $y=\sec t$ will have a minimum.
Wherever cosine t equals -1 , the graph of $y=\sec t$ will also have a y-coordinate equal to -1 . Wherever $y=\cos t$ has a minimum, the graph of $y=\sec t$ will have a maximum.
Note that maxima and minima are exactly halfway between
 asymptotes. Also note that asymptotes are exactly halfway between a maximum and a minimum.

My suggestion is that you draw the associated cosine graph first, next insert the necessary vertical asymptotes, then put maxima and minima in place, and finally draw the curve.

Example B: Sketch the graph of $y=2 \sec \left(x-\frac{\pi}{2}\right)$. (Note that the x-axis is scaled by $\pi / 2$.)

Since $\tan t=\frac{\sin t}{\cos t}$, the graphs of $y=\sin t, y=\cos t$ and $y=$ tangent t are closely related.
Wherever sine t equals 0 , the graph of $y=\tan t$ will also have a y-coordinate equal to 0 .
Wherever sine t equals 1 , cosine t equals 0 , and the graph of $y=\tan t$ has a vertical asymptote.
As cosine t approaches 0 , the graph of $y=\tan t$ will go up or down along a vertical asymptote.
The graph of $y=\tan t$ has neither a maximum nor a minimum.
The period of $y=\tan t$ is π.
Note that x-intercepts are exactly halfway between asymptotes.
Also note that asymptotes are exactly halfway between x-intercepts.

My suggestion is that you draw the associated sine graph first, next put the x-intercepts in place, then insert the necessary vertical asymptotes, and finally draw the curve.

Example C: Sketch the graph of $y=2 \tan x$. (Note that the x-axis is scaled by $\pi / 2$.)

Since $\cot t=\frac{\cos t}{\sin t}$, the graphs of $y=\cos t, y=\sin t$ and $y=$ cotangent t are closely related.
Wherever cosine t equals 0 , the graph of $y=\cot t$ will also have a y-coordinate equal to 0 .
Wherever cosine t equals 1 , sine t equals 0 , and the graph of $y=\cot t$ has a vertical asymptote.
As sine t approaches 0 [cosine t approaches 1], the graph of $y=\cot t$ will go up or down along a vertical asymptote.
The graph of $y=\cot t$ has neither a maximum nor a minimum.
The period of $y=\cot t$ is π.
Note that x-intercepts are exactly halfway between asymptotes. Also note that asymptotes are exactly halfway between
 x-intercepts.

My suggestion is that you draw the associated cosine graph first, next put the x-intercepts in place, then insert the necessary vertical asymptotes, and finally draw the curve.

Example D: Sketch the graph of $y=\cot \frac{\pi}{2} x$. (Note that the x-axis is scaled by 1.)

