Precalculus 115, section 5.4 More Graphs of Trigonometric Functions

notes by Tim Pilachowski

Since $\csc t = \frac{1}{\sin t}$, the graphs of $y = \sin t$ and $y = \operatorname{cosecant} t$

are closely related.

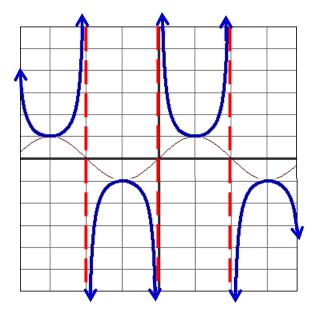
Wherever sine *t* equals 0, the graph of $y = \csc t$ has a vertical asymptote.

As sine *t* approaches 0, the graph of $y = \csc t$ will go up or down along a vertical asymptote.

Wherever sine *t* equals 1, the graph of $y = \csc t$ will also have a

y-coordinate equal to 1. Wherever $y = \sin t$ has a maximum, the graph of $y = \csc t$ will have a minimum.

Wherever sine *t* equals -1, the graph of $y = \csc t$ will also have a *y*-coordinate equal to -1. Wherever $y = \sin t$ has a minimum, the graph of $y = \csc t$ will have a maximum.



Note that maxima and minima are exactly halfway between asymptotes. Also note that asymptotes are exactly halfway between a maximum and a minimum.

My suggestion is that you draw the associated sine graph first, next insert the necessary vertical asymptotes, then put maxima and minima in place, and finally draw the curve.

Example A: Sketch the graph of
$$y = \csc\left(3x - \frac{\pi}{2}\right)$$
. (Note that the *x*-axis is scaled by $\pi/2$.)

Since $\sec t = \frac{1}{\cos t}$, the graphs of $y = \cos t$ and $y = \operatorname{secant} t$ are closely related.

Wherever cosine *t* equals 0, the graph of $y = \sec t$ has a vertical asymptote.

As cosine *t* approaches 0, the graph of $y = \sec t$ will go up or down along a vertical asymptote.

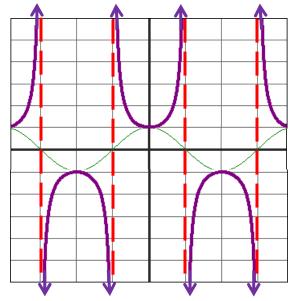
Wherever cosine *t* equals 1, the graph of $y = \sec t$ will also have a *y*-coordinate equal to 1. Wherever $y = \cos t$ has a maximum, the graph of $y = \sec t$ will have a minimum.

Wherever cosine *t* equals -1, the graph of $y = \sec t$ will also have a *y*-coordinate equal to -1. Wherever $y = \cos t$ has a minimum, the graph of $y = \sec t$ will have a maximum.

Note that maxima and minima are exactly halfway between asymptotes. Also note that asymptotes are exactly halfway between a maximum and a minimum.

My suggestion is that you draw the associated cosine graph first, next insert the necessary vertical asymptotes, then put maxima and minima in place, and finally draw the curve.

Example B: Sketch the graph of
$$y = 2 \sec\left(x - \frac{\pi}{2}\right)$$
. (Note that the *x*-axis is scaled by $\pi/2$.)



Since $\tan t = \frac{\sin t}{\cos t}$, the graphs of $y = \sin t$, $y = \cos t$ and

y =tangent *t* are closely related.

Wherever sine *t* equals 0, the graph of $y = \tan t$ will also have a *y*-coordinate equal to 0.

Wherever sine *t* equals 1, cosine *t* equals 0, and the graph of $y = \tan t$ has a vertical asymptote.

As cosine *t* approaches 0, the graph of $y = \tan t$ will go up or down along a vertical asymptote.

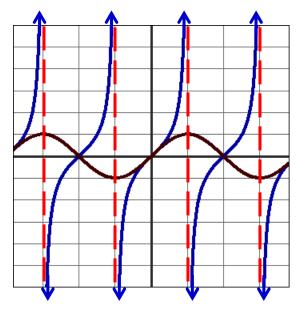
The graph of $y = \tan t$ has neither a maximum nor a minimum.

The period of $y = \tan t$ is π .

Note that *x*-intercepts are exactly halfway between asymptotes. Also note that asymptotes are exactly halfway between *x*-intercepts.

My suggestion is that you draw the associated sine graph first, next put the *x*-intercepts in place, then insert the necessary vertical asymptotes, and finally draw the curve.

Example C: Sketch the graph of $y = 2 \tan x$. (Note that the *x*-axis is scaled by $\pi/2$.)



Since $\cot t = \frac{\cos t}{\sin t}$, the graphs of $y = \cos t$, $y = \sin t$ and

y =cotangent t are closely related.

Wherever cosine *t* equals 0, the graph of $y = \cot t$ will also have a *y*-coordinate equal to 0.

Wherever cosine *t* equals 1, sine *t* equals 0, and the graph of $y = \cot t$ has a vertical asymptote.

As sine *t* approaches 0 [cosine *t* approaches 1], the graph of $y = \cot t$ will go up or down along a vertical asymptote.

The graph of $y = \cot t$ has neither a maximum nor a minimum.

The period of $y = \cot t$ is π .

Note that *x*-intercepts are exactly halfway between asymptotes. Also note that asymptotes are exactly halfway between

x-intercepts.

My suggestion is that you draw the associated cosine graph first, next put the *x*-intercepts in place, then insert the necessary vertical asymptotes, and finally draw the curve.

Example D: Sketch the graph of $y = \cot \frac{\pi}{2} x$. (Note that the *x*-axis is scaled by 1.)

