Precalculus 115, section 7.2 Trig Addition \& Subtraction Formulae

notes by Tim Pilachowski
For this section, we introduce four new identities, which you'll need to memorize.

$$
\begin{aligned}
& \sin (s+t)=\sin s \cos t+\cos s \sin t \\
& \sin (s-t)=\sin s \cos t-\cos s \sin t \\
& \cos (s+t)=\cos s \cos t-\sin s \sin t \\
& \cos (s-t)=\cos s \cos t+\sin s \sin t
\end{aligned}
$$

Your text also has formulas for tangent, but my recommendation is that you not memorize these. Instead, find sine and cosine values, then use the definition of tangent.

Example A: Find the exact values of $\sin \frac{17 \pi}{12}, \cos \frac{17 \pi}{12}$ and $\tan \frac{17 \pi}{12}$.

Example B: Write $\cos 70^{\circ} \cos 40^{\circ}+\sin 70^{\circ} \sin 40^{\circ}$ as a trigonometric function of one number, and then find its exact value.

Example C: Prove the identity $\sin (x+y)+\sin (x-y)=2 \sin x \cos y$.

Example D: Prove the identity $\cos (x+y) \cos (x-y)=\cos ^{2} x-\sin ^{2} y$.

For Example E, we'll need a formula from your text, one which you don't need to memorize.
For real numbers A and $B, A \sin x+B \cos x=k \sin (x+\phi)$, where $k=\sqrt{A^{2}+B^{2}}$ and ϕ satisfies
$\cos \phi=\frac{A}{\sqrt{A^{2}+B^{2}}}$ and $\sin \phi=\frac{B}{\sqrt{A^{2}+B^{2}}}$.
Example E: Express the function $g(x)=\cos 2 x+\sqrt{3} \sin 2 x$ in terms of sine only, then sketch the graph of the function.

