Precalculus 115, section 7.2 Trig Addition & Subtraction Formulae

notes by Tim Pilachowski

For this section, we introduce four new identities, which you'll need to memorize.

$$\sin(s+t) = \sin s \cos t + \cos s \sin t$$

$$\sin(s-t) = \sin s \cos t - \cos s \sin t$$

$$\cos(s+t) = \cos s \cos t - \sin s \sin t$$

$$\cos(s-t) = \cos s \cos t + \sin s \sin t$$

Your text also has formulas for tangent, but my recommendation is that you not memorize these. Instead, find sine and cosine values, then use the definition of tangent.

Example A: Find the exact values of $\sin \frac{17\pi}{12}$, $\cos \frac{17\pi}{12}$ and $\tan \frac{17\pi}{12}$.

Example B: Write $\cos 70^{\circ} \cos 40^{\circ} + \sin 70^{\circ} \sin 40^{\circ}$ as a trigonometric function of one number, and then find its exact value.

Example C: Prove the identity $\sin(x + y) + \sin(x - y) = 2\sin x \cos y$.

Example D: Prove the identity $\cos(x + y)\cos(x - y) = \cos^2 x - \sin^2 y$.

For Example E, we'll need a formula from your text, one which you don't need to memorize. For real numbers A and B, $A \sin x + B \cos x = k \sin(x + \phi)$, where $k = \sqrt{A^2 + B^2}$ and ϕ satisfies

$$\cos\phi = \frac{A}{\sqrt{A^2 + B^2}}$$
 and $\sin\phi = \frac{B}{\sqrt{A^2 + B^2}}$.

Example E: Express the function $g(x) = \cos 2x + \sqrt{3} \sin 2x$ in terms of sine only, then sketch the graph of the function.