Calculus 120, section 2.4 Sketching a Curve, Part 2

notes by Tim Pilachowski

We now add intercepts and asymptotes to our consideration of graphing functions.

Example A: Sketch the graph of $f(x) = x^2 + 5x - 6$.

Example B: Sketch the graph of $f(x) = (1 - 2x)^3$.

Example D: Sketch the graph of $f(x) = x^3 - x^2 - x$.

_	_	_	_	_	_	_	_	_		_	_	_	_	_			
						_					-		-		-		-
															<u> </u>		
		_									_		_	_	_	_	_
									_								

Example F: Sketch the graph of $f(x) = 2x + \frac{2}{x} - 1 = 2x + 2x^{-1} - 1$ for x > 0.

Finding asymptotes:

1) vertical asymptotes: Until chapter 4, vertical asymptotes will come from looking at denominators. Any *x*-value that would create a denominator of 0 will show up on the graph as a vertical asymptote. 2) horizontal asymptotes: Look at what happens as *x* approaches ∞ . If $\lim_{x \to \infty} f(x) = a$ number *a*, then the

horizontal asymptote has equation y = a.

For the current Math 120 syllabus, you will not need to find slant asymptotes.