Calculus 120, section 3.1 Product Rule and Quotient Rule

notes by Tim Pilachowski
In chapter 2 we found one formula for finding a derivative: the power rule (specific and general versions. Everything else was extensions or applications of the same thing. Now we present two new rules for finding derivatives-these are ones you'll need to memorize.
The first is the product rule: $\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)=f g^{\prime}+g f^{\prime}$. The text does a derivation at the end of the chapter. I'll leave it to you to look over that work.
Example A: Given $m(x)=\left(4 x^{2}-1\right)\left(3+x^{3}\right)$, find m^{\prime}.
(In Lecture 1.6 Example D we multiplied this out and used the power rule to find $m^{\prime}(x)=20 x^{4}-3 x^{2}+24 x$.)

Example B: Given $n(x)=\left(5 x^{4}-1\right)^{2}$, find $n^{\prime}(x)$.
(In Lecture 1.6 Example E we multiplied this out and used the power rule to find $n^{\prime}=200 x^{7}-40 x^{3}$.)

Note that we could have written $n^{\prime}=\left(5 x^{4}-1\right)\left(20 x^{3}\right)+\left(5 x^{4}-1\right)\left(20 x^{3}\right)=2\left(5 x^{4}-1\right)\left(20 x^{3}\right)$ which is precisely the general power rule applied to $n(x)$.
Example C. Given $f(x)=(2 x+1)^{4}(3 x-1)^{5}$, determine where f has possible extrema or points of inflection. Multiplying these out would be time-intensive and fraught with possible error. The product rule provides an easier method. To avoid confusion of letters, rather than re-use f we'll rewrite in terms of u and v. Answer: relative maximum at $x=-\frac{1}{2}$, relative minimum at $x=-\frac{7}{54}$, point of inflection at $x=\frac{1}{3}$

Example D illustrates successive applications of the product rule, with small numbers to be less confusing (hopefully). Example D. Given the polynomial $f(x)=(x+3)(x+1)^{2}(x-1)^{3}$, find the first derivative. Answer: $f^{\prime}=(x+3)\left[3(x-1)^{2}(x+1)^{2}+2(x+1)(x-1)^{3}\right]+(x+1)^{2}(x-1)^{3}$

Example E: Given $y=(\sqrt{2 x+1})(\sqrt{x}-1)$ find $\frac{d y}{d x}$. answer: $(2 x+1)^{1 / 2}\left(\frac{1}{2}\right) x^{-1 / 2}+(\sqrt{x}-1)(2 x+1)^{-1 / 2}=\frac{4 x+1-2 \sqrt{x}}{2 \sqrt{x(2 x+1)}}$

Now we move to the quotient rule.
Example F. Prove $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}$.

Example G: Given $h(x)=\frac{3 x+1}{x-2}$ find h^{\prime}. (See Lecture 2.1.)
Answer: $h^{\prime}=\frac{-7}{(x-2)^{2}}$

Example H: Locate the relative maximum of $f(x)=\frac{3 x+5}{2 x^{2}+x-3}$ between its two vertical asymptotes. Answer: $(-1,-1)$

Example I: Average cost $(A C)$ can be thought about as total cost divided by the number of items produced, or $A C=\frac{C(x)}{x}$. The text shows that where $A C$ is at its minimum, it is always true that $A C=\operatorname{marginal} \operatorname{cost}(M C)$. A small lampshade manufacturer has determined that the cost to produce x lampshades is $C(x)=\frac{1}{8} x^{2}+4 x+200$. Use the quotient rule to find the minimum of $A C$ then show that at this point $A C=M C$. Answer: $x=40$ If we don't get to this one during Lecture, do it yourself for practice using the quotient rule.

Example J: Given $f(x)=\frac{\sqrt[3]{x}}{x^{2}}$, find $f^{\prime}(x)$.
In Lecture 1.3 Example G we simplified and then used the power rule to find $f^{\prime}(x)=-\frac{5}{3 x^{8 / 3}}$. If we don't get to this one during Lecture, do it yourself for practice using the quotient rule.

