Calculus 120, section 4.1-4.2 Exponential Functions, Including e^{x}

 notes by Tim PilachowskiTake a piece of paper, and fold it in half. You've doubled the number of layers-from 1 to 2 . Fold it in half again, and you've once again doubled the layers-from 2 to 4 . After the next fold you'd have 8 layers. After the next, 16. Then 32. Then 64, 128, 256, 512, 1024, etc. After just 10 foldings, we have the paperback edition of just the first book of Lord of the Rings that we're attempting to fold in half. When x is the base, we have a power function. When x is the exponent we have an exponential function. The scenario above illustrates the exponential function $y=2^{x}$. If we compare the graph of $y=x^{2}$ to the graph of $y=2^{x}$, we can see that for positive values of x the exponential function grows much more quickly than the power function. (Thus our difficulty in folding a piece of paper in half successive times.) We'll be interested in finding a way to describe the slope of an exponential graph, i.e.
 a way to find its derivative.
Exponential functions have many applications because they model many kinds of growth and shrinking: e.g. populations, bank deposits, radioactive decay.
Example A: You deposit $\$ 100$ into a certificate of deposit which pays 5% each year on the balance current at the time. Find an equation to describe the growth of your money. Answer: $A(t)=100(1.05)^{t}$

All of the usual properties apply to exponential functions:
$b^{x} * b^{y}=b^{x+y} \quad \frac{b^{x}}{b^{y}}=b^{x-y} \quad \frac{1}{b^{y}}=b^{0-y}=b^{-y} \quad\left(b^{x}\right)^{y}=b^{x y} \quad a^{x} * b^{x}=(a b)^{x} \quad \frac{a^{x}}{b^{x}}=\left(\frac{a}{b}\right)^{x}$.
Examples B: We can use these properties to simplify expressions and solve equations.
Simplify $\left(2^{-2 x} * 2^{x+1}\right)^{3}$. Answer: $2^{-3 x+3}=2^{3} * 2^{-3 x}$

Simplify $2^{x-1} * 8^{x+3}$. Answer: $2^{4 x+8}=2^{8} * 2^{4 x}$

Simplify $\frac{2^{x-1}}{8^{x+3}}$. Answer: $2^{-2 x-10}=\frac{1}{2^{10}} * 2^{-2 x}$

Simplify $(\sqrt{12})^{x} *(\sqrt{6})^{-x}$. Answer: $2^{\frac{1}{2} x}$

We'll use functions with the form $y=C b^{k x}$ to model all kinds of applications.
Solve $2^{x^{2}+3}=16$. Answer: $x= \pm 1$

Solve: $2^{x} * 3^{x+1}=108$. Answer: $x=2$

Solve $(\sqrt{3})^{x}=\frac{1}{27}$. Answer: $x=-6$

Solve $\frac{5}{1-2^{x+1}}=10$. Answer: $x=-2$

Functions with the basic form $y=b^{x}$ are actually a family of functions. We'll consider only values for b that are positive. (Negative values of b are extremely problematic, since even and odd values of x would cause y to fluctuate between positive and negative.)
Consider the functions $y=10^{x}, y=5^{x}, y=3^{x}, y=2^{x}, y=1.1^{x}$ pictured in the graph to the right. Note first the similarities: $b^{0}=1$ for all values of $b \neq 0$, so $(0,1)$ makes a good reference point. Each of the basic exponential functions has a horizontal asymptote $y=0$. The graphs also have similar shape-the major difference is slope of the curve at specific values of x. Note that at $x=0$ slope of $y=10^{x}$ is steepest; slope of $y=1.1^{x}$ is most shallow. Our determination of first derivative will have to reflect this.

The value of the first derivative at a specific point on a curve can be estimated by considering a series of secant lines and using the difference quotient, $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
The text does $y=2^{x}$; you'll do $y=3^{x}$ for homework, so in class we'll do $y=5^{x}$ in a process very similar to that of section 1.3.

tangent at $x=0$

tangent at $x=1$

First, consider $y=5^{x}$ at $x=0$ where $y=1$. The slope of the secant line connecting $(0,1)$ to another point on the curve is given by the formula $\frac{5^{0+h}-5^{0}}{h}=\frac{5^{h}-1}{h}$. As our second point approaches $(0,1)$, the slope of the secant line approaches the slope of the tangent line, i.e slope of the tangent $=\lim _{h \rightarrow 0} \frac{5^{h}-1}{h}$. The table below provides results from successively smaller values of h.

$5^{0}=$	$h=$	$5^{h} \cong$	$5^{h}-1 \cong$	$\frac{5^{h}-1}{h} \cong$
1	1	5	4	4
1	0.1	1.174618943	0.174618943	1.746189431
1	0.01	1.016224591	0.016224591	1.622459127
1	0.001	1.001610734	0.001610734	1.610733753
1	0.0001	1.000160957	0.000160957	1.609567434
1	0.00001	1.000016095	0.000016095	1.609450864
1	0.000001	1.000001609	0.000001609	1.609439208
1	0.0000001	1.000000161	0.000000161	1.609438043
1	0.00000001	1.000000016	0.000000016	1.609437916

The slope of the tangent to $y=5^{x}$ at $x=0$, and therefore the first derivative of $y=5^{x}$ at $x=0$, is approximately 1.61 . (This is an estimate and is not exact. At some later point we'll identify the exact expression of the first derivative of $y=5^{x}$ at $x=0$ as \ln (5).)
Next we move to an arbitrary point $\left(x, 5^{x}\right)$ on the graph of $y=5^{x}$. The slope of the secant line connecting $\left(x, 5^{x}\right)$ to another point on the curve is given by the formula $\frac{5^{x+h}-5^{x}}{h}$, which can be simplified using the properties of exponents: $\frac{5^{x+h}-5^{x}}{h}=\frac{5^{x} * 5^{h}-5^{x}}{h}=\frac{5^{x}\left(5^{h}-1\right)}{h}$. As our second point approaches $\left(x, 5^{x}\right)$, the slope of the secant line approaches the slope of the tangent line, i.e slope of the tangent $=$
$\lim _{h \rightarrow 0} \frac{5^{x}\left(5^{h}-1\right)}{h}=\left[\lim _{h \rightarrow 0} \frac{\left(5^{h}-1\right)}{h}\right] * 5^{x}=\left[\left.\left(5^{x}\right)^{\prime}\right|_{x=0}\right] * 5^{x}=\left[\frac{d}{d x}\left(5^{x}\right)_{x=0}\right] * 5^{x} \cong 1.61 * 5^{x}$.
Recall now a point made above, that in the family of exponential functions, the slope of the tangent at $x=0$, and therefore the first derivative at $x=0$, ranges from very shallow to very steep. Somewhere in that family must be a base which has a first derivative equal to exactly 1 at $x=0$. This number is e, Euler's number. Like π or $\sqrt{2}, e$ is an irrational number. The value of e is approximately 2.7. (One decimal place will be sufficient for our purposes.) The corresponding function, $y=e^{x}$, is called the natural exponential function.

Given that for $y=e^{x},\left.\frac{d y}{d x}\right|_{x=0}=y^{\prime}(0)=1$, we can follow a procedure similar to that used above to get a result that is quite interesting. If we consider an arbitrary point $\left(x, e^{x}\right)$ on the graph of $y=e^{x}$, the slope of the secant line connecting $\left(x, e^{x}\right)$ to another point on the curve is given by the formula $\frac{e^{x+h}-e^{x}}{h}=\frac{e^{x}\left(e^{h}-1\right)}{h}$. As our second point approaches $\left(x, e^{x}\right)$, the slope of
 the secant line approaches the slope of the tangent line, which means it is also approaching the first derivative, or

$$
y^{\prime}=\frac{d}{d x}\left(e^{x}\right)=\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h}=\left[\lim _{h \rightarrow 0} \frac{\left(e^{h}-1\right)}{h}\right] * e^{x}=y^{\prime}(0) * e^{x}=1 * e^{x}=e^{x} .
$$

In short, the natural exponential function, $y=e^{x}$, is special because, unlike other functions, it is its own derivative. This property makes it not only very interesting, but also very useful.

As a side note, this is only one way to define e and approximate its value. There are other definitions, including

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \text { and } e=\sum_{n=0}^{\infty} \frac{1}{n!} .
$$

