Calculus 120, section 4.3 Differentiation of e^{x}

notes by Tim Pilachowski
Recall from last time that the natural logarithm function, $y=e^{x}$, is its own derivative. That is, $\frac{d}{d x}\left(e^{x}\right)=e^{x}$.
Example A: Sketch the graph of $f(x)=\frac{x^{3}}{e^{x}}$. domain:
y-intercept:
x-intercept:
first derivative:

possible extrema and points of inflection:
vertical asymptotes:
second derivative:
other possible points of inflection:
concavity of f :

interval	$x<0$	$0<x<3-\sqrt{3}$	$3-\sqrt{3}<x<3+\sqrt{3}$	$x>3+\sqrt{3}$
sign of $f^{\prime \prime}$				
concavity of f				

horizontal asymptotes:

In Example A we used the quotient rule. Sometimes the chain rule is needed for exponential functions.
Example B: Given $h(x)=e^{x^{2}-x}$, find the first derivative. Answer: $\left(e^{x^{2}-x}\right)(2 x-1)$

Example B extended: Given $h(x)=e^{x^{2}-x}$, find the second derivative. Answer: $2\left(e^{x^{2}-x}\right)+\left(e^{x^{2}-x}\right)(2 x-1)^{2}$

Example B extended once more: Given $h(x)=e^{x^{2}-x}$, find the location of any extrema. Answer: $\left(\frac{1}{2}, \frac{1}{\sqrt[4]{e}}\right)$

In general, we can apply the chain rule to functions of the form $y=C e^{k x}$:

$$
y^{\prime}=C e^{k x} * \frac{d}{d x}(k x)=C e^{k x} * k=k C e^{k x}
$$

Example C: Let $g(t)=e^{2 t}+e^{-2 t}$. Find the possible locations of relative extrema. Answer: $t=0$

Example D: The accumulated amount of an investment of $\$ 100$ with 5% annual interest compounded continuously for t years is given by the formula $A=100 e^{0.05 t}$. Find the first derivative. Answer: $5 e^{0.05 t}$

From the observation and example above, we can conclude that a differential equation of the form $y^{\prime}=k y$ must have an exponential base e as its solution, i.e. $y=C e^{k x}$ for some C. No other function is its own derivative. As a side note, in solving a differential equation like this we are essentially finding an anti-derivative, the "reverse" of finding a derivative.
Example E: Determine all functions $y=f(x)$ such that $y^{\prime}=\frac{1}{3} y$. Answer: $y=C e^{1 / 3 x}$

Example E extended: Determine the function $y=f(x)$ such that $y^{\prime}=\frac{1}{3} y$ and $y(0)=7$. Answer: $y=7 e^{1 / 3 x}$

One last note: An exponential function in a base other than e, for example $y=2^{x}$, can be easily rewritten as an exponential function base e. We'll have the tools with which we'll do the conversion in the next section.

