Calculus 120, section 4.3 Differentiation of e^{X}

notes by Tim Pilachowski

Recall from last time that the natural logarithm function, $y = e^x$, is its own derivative. That is, $\frac{d}{dx}(e^x) = e^x$.

Example A: Sketch the graph of $f(x) = \frac{x^3}{e^x}$.

domain:

y-intercept:

x-intercept:

first derivative:

possible extrema and points of inflection:

vertical asymptotes:

second derivative:

other possible points of inflection:

concavity of *f*:

interval	<i>x</i> < 0	$0 < x < 3 - \sqrt{3}$	$3 - \sqrt{3} < x < 3 + \sqrt{3}$	$x > 3 + \sqrt{3}$
sign of f''				
concavity of f				

horizontal asymptotes:

In Example A we used the quotient rule. Sometimes the chain rule is needed for exponential functions. Example B: Given $h(x) = e^{x^2 - x}$, find the first derivative. Answer: $\left(e^{x^2 - x}\right)(2x - 1)$

Example B extended: Given $h(x) = e^{x^2 - x}$, find the second derivative. Answer: $2\left(e^{x^2 - x}\right) + \left(e^{x^2 - x}\right)(2x - 1)^2$

Example B extended once more: Given $h(x) = e^{x^2 - x}$, find the location of any extrema. Answer: $\left(\frac{1}{2}, \frac{1}{\sqrt[4]{e}}\right)$

In general, we can apply the chain rule to functions of the form $y = Ce^{kx}$:

$$y' = Ce^{kx} * \frac{d}{dx}(kx) = Ce^{kx} * k = kCe^{kx}.$$

Example C: Let $g(t) = e^{2t} + e^{-2t}$. Find the possible locations of relative extrema. Answer: t = 0

Example D: The accumulated amount of an investment of \$100 with 5% annual interest compounded continuously for *t* years is given by the formula $A = 100e^{0.05t}$. Find the first derivative. Answer: $5e^{0.05t}$

From the observation and example above, we can conclude that a differential equation of the form y' = ky must have an exponential base *e* as its solution, i.e. $y = Ce^{kx}$ for some *C*. No other function is its own derivative. As a side note, in solving a differential equation like this we are essentially finding an anti-derivative, the "reverse" of finding a derivative.

Example E: Determine all functions y = f(x) such that $y' = \frac{1}{3}y$. Answer: $y = Ce^{\frac{1}{3}x}$

Example E extended: Determine the function y = f(x) such that $y' = \frac{1}{3}y$ and y(0) = 7. Answer: $y = 7e^{\frac{1}{3}x}$

One last note: An exponential function in a base other than e, for example $y = 2^x$, can be easily rewritten as an exponential function base e. We'll have the tools with which we'll do the conversion in the next section.