## Calculus 120, section 4.4 The Natural Logarithm Function

notes by Tim Pilachowski
Given a function $f$ and its inverse, $f^{-1}$, the following will always be true:

1. If $f(a)=b$, then $f^{-1}(b)=a$ (This fact and the statement in point \#2 below is actually the same information.)
2. If $(a, b)$ is a point on the graph of $f$, then $(b, a)$ will be on the graph of $f^{-1}$.
3. The domain of $f=$ the range of $f^{-1}$, and the range of $f=$ the domain of $f^{-1}$.
4. $f \circ f^{-1}=x$ and $f^{-1} \circ f=x$. To show that two functions are inverses you must do both compositions.
5. The graph of $f$ and the graph of $f^{-1}$ are symmetric with respect to the line $y=x$.

A logarithm function is a constructed inverse for an exponential function. The natural logarithm function, $y=\ln (x)$, is the inverse of the natural exponential function, $f(x)=e^{x}$. Applying the above:

1. For one example, $f(0)=e^{0}=1$ and $f^{-1}(1)=\ln (1)=0$.
2. For one example, $(0,1)$ is on the graph of $f(x)=e^{x}$ and $(1,0)$ is on the graph of $f^{-1}(x)=\ln (x)$.
3. The domain of $f(x)=e^{x}$ is the range of $f^{-1}(x)=\ln (x):-\infty<x<\infty$. The range of $f(x)=e^{x}$ is the domain of $f^{-1}(x)=\ln (x): 0<x<\infty$.


Note also that while the graph of $f(x)=e^{x}$ has a horizontal asymptote at $y=0$, the graph of $f^{-1}(x)=\ln (x)$ has a vertical asymptote at $x=0$.
4. $f \circ f^{-1}=e^{\ln x}=x$ and $f^{-1} \circ f=\ln \left(e^{x}\right)=x$.
5. The graphs of $f(x)=e^{x}$ and $f^{-1}(x)=\ln (x)$ are symmetric with respect to the line $y=x$.

In Lecture 4.2 we determined that the slope of $f(x)=e^{x}$ is 1 at the point $(0,1)$, i.e. $f^{\prime}(0)=1$.
By symmetry, the slope of $f^{-1}(x)=\ln (x)$ is 1 at the point $(1,0)$, i.e. $\left(f^{-1}\right)^{\prime}(1)=1$.
Also note that while both functions are increasing over their entire domain, $f(x)=e^{x}$ is concave up, $f^{-1}(x)=\ln (x)$ is concave down.
In Lecture 4.5, we'll use points 1,2 , and 5 from above to determine the derivative of $f^{-1}(x)=\ln (x)$.
Example A: Simplify $\ln \left(\sqrt[5]{e^{3}}\right)$. Answer: $\frac{3}{5}$

Example B: Simplify $e^{\ln (x+2)}$. Answer: $x+2$

Example C: Simplify $e^{\ln (x)+2}$. Answer: $x e^{2}$

Example D: Solve $5 \ln (x-1)+4=0$. Answer: $e^{-4 / 5}+1$

Example E: Solve $\ln \left(x^{2}-1\right)=4$. Answer: $\pm \sqrt{e^{4}+1}$

Example F: Given $f(x)=5^{x}$, find $f^{\prime}(x)$. Answer: $(\ln 5) * 5^{x}$

Example G: Find relative extrema of $f(x)=5 x+e^{-2 x}$.
Find first derivative and set it equal to 0 :

Use $f^{\prime \prime}$ to determine concavity:


We conclude that the point $\left(-\frac{1}{2} \ln \frac{5}{2}, \frac{5}{2}-\frac{5}{2} \ln \frac{5}{2}\right)$ is an absolute minimum. slant asymptote:

Example H: The concentration of a drug in the bloodstream $t$ hours after injection into a muscle is given by $c(t)=9\left(e^{-0.3 t}-e^{-3 t}\right)$ units. Find the time at which the concentration of the drug in the bloodstream is at its maximum.

Example I (logistic growth curve-more about these in chapter 5): Fish population as a function of time is given by $P(t)=\frac{80}{2+3 e^{-10 t}}$. Sketch the graph.
domain:
$P$-intercept (vertical axis):
$t$-intercept (horizontal axis):


The grid above is in a window $[-0.1,2,1]$ by $[-1,45,5]$.
point of inflection?

To the left of the point of inflection the graph is concave up; to the right it is concave down. asymptotes?

Note how this logistic growth curve is very steep then seems to level off quickly.

