Calculus 120, section 4.4 The Natural Logarithm Function

notes by Tim Pilachowski

Given a function f and its inverse, f^{-1} , the following will always be true:

1. If f(a) = b, then $f^{-1}(b) = a$ (This fact and the statement in point #2 below is actually the same information.)

2. If (a, b) is a point on the graph of f, then (b, a) will be on the graph of f^{-1} .

3. The domain of f = the range of f^{-1} , and the range of f = the domain of f^{-1} .

4. $f \circ f^{-1} = x$ and $f^{-1} \circ f = x$. To show that two functions are inverses you must do *both* compositions.

5. The graph of f and the graph of f^{-1} are symmetric with respect to the line y = x.

A *logarithm* function is a constructed inverse for an exponential function. The *natural logarithm* function, y = ln(x), is the inverse of the natural

exponential function, $f(x) = e^x$. Applying the above:

1. For one example, $f(0) = e^0 = 1$ and $f^{-1}(1) = \ln(1) = 0$.

2. For one example, (0, 1) is on the graph of $f(x) = e^x$ and (1, 0) is on the graph of $f^{-1}(x) = \ln(x)$.

3. The domain of $f(x) = e^x$ is the range of $f^{-1}(x) = \ln(x)$: $-\infty < x < \infty$. The range of $f(x) = e^x$ is the domain of $f^{-1}(x) = \ln(x)$: $0 < x < \infty$.

Note also that while the graph of $f(x) = e^x$ has a horizontal asymptote at y = 0,

the graph of $f^{-1}(x) = \ln(x)$ has a vertical asymptote at x = 0.

4.
$$f \circ f^{-1} = e^{\ln x} = x$$
 and $f^{-1} \circ f = \ln(e^x) = x$.

5. The graphs of $f(x) = e^x$ and $f^{-1}(x) = \ln(x)$ are symmetric with respect to the line y = x.

In Lecture 4.2 we determined that the slope of $f(x) = e^x$ is 1 at the point (0, 1), i.e. f'(0) = 1. By symmetry, the slope of $f^{-1}(x) = \ln(x)$ is 1 at the point (1, 0), i.e. $(f^{-1})'(1) = 1$.

Also note that while both functions are increasing over their entire domain, $f(x) = e^x$ is concave up, $f^{-1}(x) = \ln(x)$ is concave down.

In Lecture 4.5, we'll use points 1, 2, and 5 from above to determine the derivative of $f^{-1}(x) = \ln(x)$.

Example A: Simplify $\ln\left(\sqrt[5]{e^3}\right)$. Answer: $\frac{3}{5}$

Example B: Simplify $e^{\ln(x+2)}$. Answer: x + 2

Example C: Simplify $e^{\ln(x)+2}$. Answer: xe^2

Example D: Solve $5\ln(x-1) + 4 = 0$. Answer: $e^{-\frac{4}{5}} + 1$

Example E: Solve $\ln(x^2 - 1) = 4$. Answer: $\pm \sqrt{e^4 + 1}$

Example F: Given $f(x) = 5^x$, find f'(x). Answer: $(\ln 5) * 5^x$

Example G: Find relative extrema of $f(x) = 5x + e^{-2x}$. Find first derivative and set it equal to 0:

Use f'' to determine concavity:

We conclude that the point $\left(-\frac{1}{2}\ln\frac{5}{2}, \frac{5}{2}-\frac{5}{2}\ln\frac{5}{2}\right)$ is an absolute minimum. slant asymptote:

Example H: The concentration of a drug in the bloodstream *t* hours after injection into a muscle is given by $c(t) = 9(e^{-0.3t} - e^{-3t})$ units. Find the time at which the concentration of the drug in the bloodstream is at its maximum.

Example I (logistic growth curve—more about these in chapter 5): Fish population as a function of time is given by $P(t) = \frac{80}{2+3e^{-10t}}$. Sketch the graph.

domain:

P-intercept (vertical axis):

t-intercept (horizontal axis):

point of inflection?

To the left of the point of inflection the graph is concave up; to the right it is concave down. asymptotes?

Note how this logistic growth curve is very steep then seems to level off quickly.

