Calculus 120, section 4.5 The Derivative of $ln(x)$

notes by Tim Pilachowski

The *natural logarithm* function, $y = ln(x)$, is the inverse of the natural exponential function, $y = e^x$. In Lecture 4.2 we determined that the slope of $y = e^x$ is 1 at the point (0, 1), i.e. $\frac{d}{dx}(e^x) = 1$ 0 = $x =$ *e dx* $\frac{d}{dx}$ (e^x) = 1. By symmetry, the slope of $y = \ln(x)$ should also be 1 at the point (1, 0), i.e. $(\ln x) = 1$ $\ln x$ = *x* $\frac{d}{dx}$ (ln x) = 1. Also recall that $y = \ln(x)$ is increasing and the graph is

1 $x =$ *dx* concave down over its entire domain The formula we use for the derivative of $ln(x)$ must meet all of these conditions.

Finding a derivative formula for $ln(x)$ is actually quite simple. First note that since $e^{\ln x} = x$, then $(e^{\ln x}) = \frac{d}{dx}(x) = 1$ *dx* $\left(e^{\ln x}\right) = \frac{d}{dx}$ *dx* $\frac{d}{dx}\left(e^{\ln x}\right) = \frac{d}{dx}(x) = 1$. By the chain rule, $\frac{d}{dx}\left(e^{\ln x}\right) = e^{\ln x} * \frac{d}{dx}(\ln x) = x * \frac{d}{dx}(\ln x) = 1 \rightarrow \frac{d}{dx}(\ln x)$ *x x dx* $f(x) = 1 \rightarrow \frac{d}{dx}$ *dx* $f(x) = x * \frac{d}{dx}$ *dx* $\left(e^{\ln x}\right) = e^{\ln x} * \frac{d}{dx}$ *dx* $\frac{d}{dx} \left(e^{\ln x} \right) = e^{\ln x} * \frac{d}{dx} (\ln x) = x * \frac{d}{dx} (\ln x) = 1 \rightarrow \frac{d}{dx} (\ln x) = \frac{1}{x}.$

Note that $\frac{d}{dx}(\ln x) = \frac{1}{x} = 1$ 1 1 1 $\ln x$ = $\frac{1}{1}$ = = = $x = 1$ $x | x$ *x dx* $\frac{d}{dx}$ (ln x) = $\frac{1}{x}$ = $\frac{1}{x}$ = 1. Also $\frac{d}{dx}$ (ln x) = $\frac{1}{x} > 0$ *x x dx* $\frac{d}{dx}$ (ln x) = $\frac{1}{x}$ > 0 and $\frac{d^2}{dx^2}$ (ln x) = $-\frac{1}{x^2}$ < 0 2 $=-\frac{1}{2}<$ *x x dx* $\frac{d^2}{dx^2}$ (ln x) = $-\frac{1}{2}$ < 0 for all x in the domain

of $ln(x)$. In other words, all of the necessary conditions listed above have been met. The examples below will utilize this formula along with the product rule, quotient rule and chain rule.

Example A: Given $h(x) = x^3 * \ln x$ find the first and second derivative. *Answers*: $x^2 (1 + 3 \ln x)$; $x (5 + 6 \ln x)$

Example B: Given
$$
f(x) = \frac{x^3}{\ln x}
$$
 find the first derivative. Answer: $\frac{x^2 (3 \ln x - 1)}{[\ln x]^2}$

Example C: Given
$$
g(x) = \frac{\ln x}{x^3}
$$
 find the first derivative. Answer: $\frac{1 - 3\ln x}{x^4}$

Carefully note the placement of coefficients when finding derivatives. constant multiple rule
 $m(x) = k \ln(x)$ chain rule
 $n(x) = \ln(k x)$ $n(x) = \ln(k x)$

Example D: Give $h(x) = \ln(x^3)$, find the first and second derivatives. *Answers*: $\frac{3}{x}$; $-\frac{3}{x^2}$ *x x* −

When using the chain rule, it is extremely important to correctly identify the "outside" and "inside" functions. Check that your composition is set up correctly.

Example E: Give $h(x) = [\ln x]^5$, find the first and second derivatives. *Answers*: $\frac{5(\ln x)^4}{2}$ *x* $\frac{5(\ln x)^4}{2}$; $(\ln x)^3 - 5(\ln x)^6$ 2 $20(\ln x)^3 - 5(\ln x)^4$ *x* $(x)^3 - 5(\ln x)$

We can use the above to sketch the graph of $h(x) = [\ln x]^5$.

asymptotes:

y-intercept:

x-intercepts:

possible extrema:

possible points of inflection:

A table of signs tells us concavity:

The point of inflection at $(e^4, 1024) \approx (54.598, 1024)$ is far outside the standard window on a graphing calculator. One could zoom out a good bit, or use different scales for *x*- and *y*-axes—but then the other characteristics of the graph would be obscured. Note the three versions of the graph pictured below.

