Calculus 120, section 4.5 The Derivative of ln(x)

notes by Tim Pilachowski

The *natural logarithm* function, $y = \ln(x)$, is the inverse of the natural exponential function, $y = e^x$. In Lecture 4.2 we determined that the slope of $y = e^x$ is 1 at the point (0, 1), i.e. $\frac{d}{dx}(e^x)\Big|_{x=0} = 1$. By symmetry, the slope of $y = \ln(x)$ should also be 1 at the point (1, 0), i.e.

 $\frac{d}{dx}(\ln x)\Big|_{x=1} = 1$. Also recall that $y = \ln(x)$ is increasing and the graph is concave down over its entire domain The formula we use for the derivative of $\ln(x)$ must meet all of these conditions.

Finding a derivative formula for $\ln(x)$ is actually quite simple. First note that since $e^{\ln x} = x$, then $\frac{d}{dx} \left(e^{\ln x} \right) = \frac{d}{dx} (x) = 1$. By the chain rule, $\frac{d}{dx} \left(e^{\ln x} \right) = e^{\ln x} * \frac{d}{dx} (\ln x) = x * \frac{d}{dx} (\ln x) = 1 \rightarrow \frac{d}{dx} (\ln x) = \frac{1}{x}$.

Note that $\frac{d}{dx}(\ln x)\Big|_{x=1} = \frac{1}{x}\Big|_{x=1} = 1$. Also $\frac{d}{dx}(\ln x) = \frac{1}{x} > 0$ and $\frac{d^2}{dx^2}(\ln x) = -\frac{1}{x^2} < 0$ for all x in the domain of $\ln(x)$. In other words, all of the necessary conditions listed above have been met. The examples below will utilize this formula along with the product rule, quotient rule and chain rule.

Example A: Given $h(x) = x^3 * \ln x$ find the first and second derivative. Answers: $x^2 (1 + 3 \ln x)$; $x(5 + 6 \ln x)$

Example B: Given $f(x) = \frac{x^3}{\ln x}$ find the first derivative. Answer: $\frac{x^2 (3 \ln x - 1)}{[\ln x]^2}$

Example C: Given $g(x) = \frac{\ln x}{x^3}$ find the first derivative. Answer: $\frac{1 - 3 \ln x}{x^4}$

Carefully note the placement of coefficients when finding derivatives. constant multiple rule chain rule
$$m(x) = k \ln(x) \qquad n(x) = \ln(k x)$$

Example D: Give
$$h(x) = \ln(x^3)$$
, find the first and second derivatives. Answers: $\frac{3}{x}$; $-\frac{3}{x^2}$

When using the chain rule, it is extremely important to correctly identify the "outside" and "inside" functions. Check that your composition is set up correctly.

Example E: Give
$$h(x) = [\ln x]^5$$
, find the first and second derivatives. Answers: $\frac{5(\ln x)^4}{x}$; $\frac{20(\ln x)^3 - 5(\ln x)^4}{x^2}$

window [-1, 1999] by [-10, 1990]

window [-1, 499] by [-10, 4990]

window [-1, 19] by [-10, 10]