
Calculus 120, section 7.4 Lagrange Multipliers 
notes by Tim Pilachowski 
 

 

If you have taken Math 110 or 113 or a finite mathematics course you will have encountered linear 
programming. A typical word problem looks like this: 

A company manufactures two types of desks. Let x = the number of steel desks and let y = the number 
of wood desks. The profit for steel desks is $80 each, and the profit for wood desks is $175. The 
company wants to maximize its profit. Each steel desk requires 2 hours of assembly and 1 hour of 
finishing. Wood desks require 4 hours of assembly and 3 hours of finishing. The company has 100 
work-hours available for assembly and 60 work-hours available for finishing. 

 

The company’s goal (i.e. objective) is to maximize profit: yxP 17580 += . In 

theory, this function has no maximum: make more desks = make more money. 
In the real world, however, there are limitations (i.e. constraints): the number of 
employees and therefore the number of desks that can be made has an upper 
limit. The hours available for assembly is expressed in the assembly constraint 

10042 ≤+ yx . The hours available for finishing is expressed in the finishing 

constraint 603 ≤+ yx . In addition, the number of each type of desk made cannot 

be negative: 0  and  0 ≥≥ yx . The “system of constraints” which illustrates the 

“feasible set” is graphed to the right, with corners labeled. 
 

If we were to graph the level curves for the profit function ( ) yxyxP 17580, += , they would appear as a series 

of parallel lines: all with the same slope but representing varying levels of profit. The maximum possible (i.e. 
feasible) profit is represented by the level curve where P = 4150 that passes through the corner (30, 10). 
 

You won’t be asked to do a linear programming question in this class, but you will need some of the same 
algebra skills, such as solving a system of equations. 
 

Rather, in calculus, while we’re still looking for some optimum value (maximum or minimum), neither the 
objective nor the constraints are likely to be linear functions, and we’ll need somewhat more involved methods 
of finding the maximum or minimum of the objective, within the given constraints. Given an objective function 
f and a constraint function g the process looks like this: 

Identify the objective function—it’s the one that needs to be maximized or minimized. 
Write the constraint function in the form g = 0. 

Create a function F = objective + λ (constraint) where λ is the Lagrange multiplier. 

Find all first partial derivatives, including with respect to λ, and set them equal to 0. 

Solve the resulting system of equations for all variables, including λ. 

It will usually be best to solve the first equations for λ and set them equal to each other, using a series of 
substitutions to find the rest of the values. 
 

Example A: Find the minimum value of ( ) 72, 22 ++= yxyxf  subject to the constraint ( ) 18. ++= yxyxg . 

Answer: ( ) 22312,6 =−−f  
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Example B: For a specified product, the Cobb-Douglas production function is ( ) 3
1

3
2

600, yxyxf =  where x = 

the number of units of labor and y = the number of units of capital. The cost of labor is $400 per unit and the 
cost of capital is $200 per unit. The company wants to make 54000 of their product at the lowest possible cost. 
Determine the number of units of labor and the number of units of capital that would minimize cost. 
Don’t be fooled into thinking that the letter f always indicates the objective function! The letters used are 

chosen arbitrarily.   Answer: C(90, 90) = $54000 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note that at (x, y) = (90, 90), 
C
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 = marginal cost of labor = 400, and 
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 = marginal cost of capital = 400. 

Also, when (x, y) = (90, 90), 
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λ = = . In this case λ represents the marginal cost of productivity: If one 

more unit is produced, the cost per unit is $1. 
 



Example C: We want to make a rectangular open box with one partition in the middle, as illustrated in the 

picture, from 162 2in  of cardboard. Find the dimensions that would 
maximize the volume. (Okay, this isn’t much like a real-world problem. If 
you’d rather, you can change it to “cargo container and sheet metal”.) 

 

Answer: 9 in by 6 in by 3 in 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note that 
V
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 = yz ⇒   Increasing length by 1 increases volume by 18 in3. 

V
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 = xz ⇒  Increasing width by 1 

increases volume by 27 in3. 
V
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 = xy ⇒  Increasing height by 1 increases volume by 54 in3. (All easily 

verifiable). λ = marginal volume with respect to surface area = 
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optimal level, changes in the dimensions within the given constraint would decrease the volume. 
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