Calculus 140, section 2.3 Limit Rules and Examples

notes prepared by Tim Pilachowski
Recall from Lecture 2.2 - Definition of Limit: "Let f be a function defined at each point of some open interval containing a, except possibly a itself. Then a number L is the limit of $\boldsymbol{f}(\boldsymbol{x})$ as \boldsymbol{x} approaches a (or is the limit of f at \boldsymbol{a}) if for every number $\varepsilon>0$ there is a number $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta \text {, then }|f(x)-L|<\varepsilon \text { ". }
$$

Here's the good news: We won't have to identify ε and δ every time we want to find a limit. Limits have properties that we will use to make the process much more expedient.
Theorem 2.2: If all of the limits involved exist, then
Sum Rule: $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
Constant Multiple Rule: for any constant $c, \lim _{x \rightarrow a}[c * f(x)]=c * \lim _{x \rightarrow a} f(x)$
Difference Rule: $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
Product Rule: $\lim _{x \rightarrow a}[f(x) * g(x)]=\lim _{x \rightarrow a} f(x) * \lim _{x \rightarrow a} g(x)$
Quotient Rule: as long as, $\lim _{x \rightarrow a} g(x) \neq 0, \quad \lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$
[All of these, with more detailed explanations of requirements, are also in your text!]
Bottom lines: The limit of a sum/difference/product is the sum/difference/product of the limits.
For the most part, the limit of a quotient is the quotient of the limits, except when the limit of the denominator equals 0 .

Repeated application of Sum and Product Rules give us the limits of polynomial and rational functions (as long as the limit of the denominator does not equal 0 .

Example A: Use the properties of limits to find $\lim _{x \rightarrow 1} \frac{x-1}{x^{2}+1}$. answer: 0

Example B: Use the properties of limits to find $\lim _{x \rightarrow 0} \frac{[1 /(x+1)]-1}{x}$. answer: -1

There are some limits which we will come across in future sections that are very important, and useful.

$$
\lim _{x \rightarrow a} x^{r}=a^{r} \quad \lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}\left\{\begin{array}{l}
\text { for all } a \text { if } n \text { is odd } \\
\text { for all } a>0 \text { if } n \text { is even }
\end{array}\right.
$$

Examples C: Use the properties of limits to find a) $\lim _{x \rightarrow 4} \frac{\sqrt{x}-1}{x-1}$ and b) $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}$. answers: $\frac{1}{3}, \frac{1}{2}$

The text also proves limits involving exponential, logarithm and trigonometric functions.

$$
\lim _{x \rightarrow a} e^{x}=e^{a} \quad \lim _{x \rightarrow a} \ln x=\ln a \text { for } a>0 \quad \lim _{x \rightarrow a} \sin x=\sin a \quad \lim _{x \rightarrow a} \cos x=\cos a
$$

An extremely useful (and important) item involving limits is the Squeezing Theorem.
Theorem 2.3: "Assume that $f(x) \leq g(x) \leq h(x)$ for all x in some open interval about a except possibly a itself. If $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$, then $\lim _{x \rightarrow a} g(x)$ exists and $\lim _{x \rightarrow a} g(x)=L$."

The Squeezing Theorem will allow us to evaluate limits that would otherwise be inaccessible. Specifically, we will need $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ and $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$ when we develop the calculus of trigonometric functions.

The text develops a geometric argument to prove $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ [Example 7] and an algebraic argument to show that $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$ [Example 8].

Example D [text exercise \#40]: Use the Squeezing Theorem to evaluate $\lim _{x \rightarrow 1} \frac{(\ln x)^{2}}{1+e^{\frac{1}{x-1}}}$.

Hints for text exercises \#37 and \#39:

1) Trig functions $\cos x$ and $\sin x$ will always lie between what two values?
2) If we have an inequality such as $-1 \leq \cos x \leq 1$, and we want to multiply through, why would we want to multiply with positive values?

If we have an inequality and we want to multiply through by a variable such as x, how could we make sure we're multiplying by a positive?

One more rule for limits. The Substitution Rule allows us to evaluate limits of composite functions:

$$
\lim _{x \rightarrow a} g(f(x))=\lim _{y \rightarrow c} g(y) \text { where } c=\lim _{x \rightarrow a} f(x)
$$

The text has a precise statement and proof in the Appendix.
If f is continuous at a, and g is continuous at $f(x)$, then the substitution rule reduces to $\lim _{x \rightarrow a} g(f(x))=g(f(a))$.
If the continuity requirement is not met, then we'll have to go the long way around.
Example E. Evaluate $\lim _{x \rightarrow 0} \frac{\cos 2 x-1}{x}$.

Example E extended. Evaluate $\lim _{x \rightarrow \pi / 2} \frac{e^{\sin (2 x-\pi)}-1}{\sin (2 x-\pi)}$.

