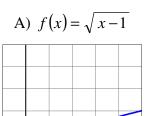
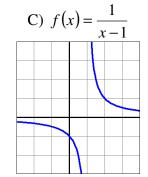
Calculus 140, section 2.4 One-Sided and Infinite Limits

notes prepared by Tim Pilachowski

Examples A–D: Consider the following functions. Why is it problematic to try to evaluate $\lim_{x\to 1} f(x)$ for them?



B)
$$f(x) = \frac{|x-1|}{x-1}$$



$$D) f(x) = \ln(x - 1)$$

Definition 2.4: "Let f be a function defined at each point of some open interval (c, a). A number L is the **limit of** f(x) as x approaches a from the left (or is the **left-hand limit of** f at a) if for every $\varepsilon > 0$ there is a number $\delta > 0$ such that

if
$$a - \delta < x < a$$
, then $|f(x) - L| < \varepsilon$.

In this case we write $\lim_{x\to a^{-}} f(x) = L$ and say that the **left-hand limit of f at a** exists."

The notation $\lim_{x\to a^-} f(x)$ is read "the limit of f(x) as x approaches a from the left".

If we were to consider some open interval (a, c) to the *right* of a, we get the analogous **right-hand limit of f at** a. If $\lim_{x \to a^+} f(x) = L$ we say that the **right-hand limit of f at a** exists."

The notation $\lim_{x \to a^+} f(x)$ is read "the limit of f(x) as x approaches a from the right".

How do these **one-sided limits** connect to the ordinary, or **two-sided limits** of section 2.2?

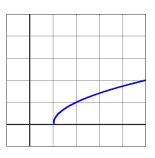
Theorem 2.5 (short version): If both one-sided limits exist and also $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)$, then $\lim_{x \to a} f(x)$

exists, and

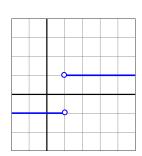
$$\lim_{x \to a} f(x) = \lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x).$$

Good news: All of the properties given in Lecture 2.3 (sum rule, constant multiple rule, etc.) apply to one-sided limits!

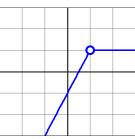
As always, you should read through the more detailed explanations in the text, and look over the text's workedout Examples. Example A: Given $f(x) = \sqrt{x-1}$, evaluate $\lim_{x \to 1^{-}} f(x)$, $\lim_{x \to 1^{+}} f(x)$ and $\lim_{x \to 1} f(x)$.



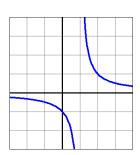
Example B: Given $f(x) = \frac{|x-1|}{x-1}$, evaluate $\lim_{x \to 1^-} f(x)$, $\lim_{x \to 1^+} f(x)$ and $\lim_{x \to 1} f(x)$.



Example B extended: Given
$$f(x) = \begin{cases} 2x - 1 & \text{for } x < 1 \\ 1 & \text{for } x > 1 \end{cases}$$
, evaluate $\lim_{x \to 1^{-}} f(x)$, $\lim_{x \to 1^{+}} f(x)$ and $\lim_{x \to 1} f(x)$.

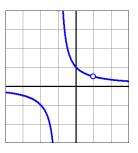


Example C: Given $f(x) = \frac{1}{x-1}$, evaluate $\lim_{x \to 1^-} f(x)$, $\lim_{x \to 1^+} f(x)$ and $\lim_{x \to 1} f(x)$.

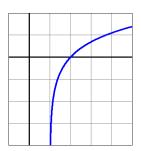


Definition 2.6 (short version): If $\lim_{x \to a^{+\alpha -}} f(x) = \infty$, or $\lim_{x \to a^{+\alpha -}} f(x) = -\infty$, then "the vertical line x = a is called a **vertical asymptote of the graph of** f, and we say that f has an **infinite** ... **limit at** a."

Example C extended: Given $f(x) = \frac{x-1}{x^2-1}$, find all vertical asymptotes.

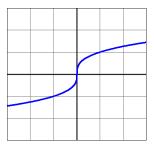


Example D: Given $f(x) = \ln(x - 1)$, evaluate $\lim_{x \to 1^{-}} f(x)$, $\lim_{x \to 1^{+}} f(x)$ and $\lim_{x \to 1} f(x)$.



The text considers the graph of $f(x) = \sqrt[3]{x}$. While it has no vertical asymptotes, something interesting occurs when we consider the slope of the tangent at x = 0.

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \frac{x^{\frac{1}{3}} - 0}{x - 0} = \frac{1}{x^{\frac{2}{3}}} = \infty$$



Definition 2.7: "Suppose f is continuous at a. If $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = \infty$ or $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = -\infty$ then we say that the graph of f has a **vertical tangent at** (a, f(a)). In that case the vertical line x = a is called the **line tangent to the graph of** f at a."