Calculus 140, section 3.1 Derivatives

notes prepared by Tim Pilachowski
We include section 3.1 with Chapter 2 on Exam 1 because it really is just a small extension of the topics of Chapter 2.
From sections 2.1 and 2.2, we have that the slope of a line tangent to a graph at a point where $\boldsymbol{x}=\boldsymbol{a}$ is

$$
m_{a}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} .
$$

Then, substituting into the (I hope) familiar point-slope formula $\left[y-y_{1}=m\left(x-x_{1}\right)\right]$ we get that the equation of a line tangent to a graph at a point where $\boldsymbol{x}=\boldsymbol{a}$ is

$$
y-f(a)=m_{a}(x-a) \text { or } y=f(a)+m_{a}(x-a) .
$$

We're now going to formalize this into the definition of "one of the two central concepts of calculus: the derivative."
Definition 3.1: "Let a be a number in the domain of the function f. If $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ exists, we call this limit the derivative of \boldsymbol{f} at \boldsymbol{a}, and denote it by $f^{\prime}(a)$, so that $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$."
If this limit exists, we'll use terminology such as " f has a derivative at a " and " f is differentiable at a ".
The (first) derivative of f has several notations that we will use on a regular basis: $f^{\prime}, f^{\prime}(x), y^{\prime}, \frac{d y}{d x}, \frac{d}{d x}[f(x)]$. Others that you might see in other texts include $\dot{u}, D f(x), D_{x} f$. (Note the dot over the u.) [See Table 3.1 in the text.]

Back to lines tangent to a curve.
By definition, the slope of the line tangent to a curve at the point $(a, f(a))$ is $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$.
By extension, the equation of the line tangent to to the curve at the point $(a, f(a))$ is

$$
y-f(a)=f^{\prime}(a)(x-a) \text { or equivalently } y=f(a)+f^{\prime}(a)(x-a)
$$

Example A: Find the equation of the line tangent to $f(x)=x^{2}-4$ at $x=1$.

Theorem 3.2: "If f is differentiable at a, then f is continuous at a, that is $\lim _{x \rightarrow a} f(x)=f(a)$."
This follows from the definitions of differentiable and continuity. See the text's proof for details.
IMPORTANT: This is a one-way conditional statement! While differentiable implies continuity, continuous does not imply differentiable. See the text's Example 3 which looks at $f(x)=|x|$ at $x=0$.

It would be labor-intensive (and impossible) to use the definition above to find the (first) derivative of a given function for every one of the infinite points in its domain.
Instead, we're going to generalize the process to find a formula that can be used for any value x in the domain of a given function.
Specifically, given a differentiable function f, the (first) derivative of f is given by $f^{\prime}(x)=\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x}$.

Example A revisited: Given $f(x)=x^{2}-4$, find a formula for the (first) derivative of f, that is, for $f^{\prime}(x)$. Then, use your formula to find $f^{\prime}(a)$ for various values a.

Hint for homework: You may find the text's Example $5(f(x)=\sqrt{x})$ useful when searching for a technique to use for homework questions.

One last note on applications (i.e. word problems). In applications questions, the first derivative of some functions takes on a very specific meaning, one of which the text explores in Example 2, and you will be asked to evaluate in homework exercises:
"velocity is the derivative of the position function: $v(t)=f^{\prime}(t)$
marginal cost is the derivative of the cost function: $m_{C}(x)=C^{\prime}(x)$ marginal revenue is the derivative of the revenue function: $m_{R}(x)=R^{\prime}(x)$ ".

