
Calculus 140, section 3.5 Higher Order Derivatives 
notes by Tim Pilachowski 
 

Given a function ( ) r
xxf =  where r is a non-zero real number, ( ) 1−=′ r

xrxf  [section 3.2, 3.3, 3.4] 
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Recall, however, that the first derivative is itself a function, which has its own domain and its own graph. Since 

it is a function, it also has its own derivative. Given a function f, we can calculate the first derivative 
dx

dy
f or    ′ .  

 

We can then calculate the derivative of f ′ , i.e. the second derivative of f, symbolically ( )
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Important note: Just like 
dx

dy
 is not a fraction, but is a notation for the first derivative, 
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fraction but a notation. There is no multiplication involved! Rather, you need to interpret it this way: 
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 which means “the derivative of 
dx

dy
”, the derivative of a derivative. 

 

In a similar fashion, we can find higher-order derivatives. 
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Example A: Given ( ) 283 +−= xxxf , find all higher derivatives of f . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example B: Given ( ) 225 xxf −= , find the second derivative.   answer:
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Example C: Given ( )
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In Examples B and C, we needed the Quotient Rule. Your text, in Example 6, uses the Product Rule, to find the 

first three derivatives of y = x sin x. 
 

The text also, in Example 5, demonstrates that for functions ( ) xc
exf = , the nth derivative is ( )( ) xcnn

ecxf = . 
 

Example D: Given ( ) xxf ln= , find a formula for the nth derivative of f for n ≥ 1.  answer: ( ) ( )[ ] nn
xn
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We have already, in earlier sections, determined that velocity is the first derivative of a position function. 

But velocity is not always constant. Rather, it changes. Sometimes we go slower; sometimes we speed up. 

The rate of change of velocity is called acceleration. 

The derivative of velocity is acceleration. 

The derivative of [the derivative of position] is acceleration. 

The second derivative of a position function is acceleration. 

(Read through the text’s explanation and example 7.) 

 

Example E: The three graphs below (in no particular order) are graphs of ( )th , the height of a toy helicopter 

above the ground, ( )tv  [the velocity of the helicopter], and ( )ta  [the acceleration of the helicopter]. Use your 

knowledge of first and second derivatives to determine which graph is of which function. Justify your answer. 
 

    
 


