Calculus 140, section 5.7 The Logarithm

notes prepared by Tim Pilachowski

In Algebra/Precalculus classes, you were handed (on a silver platter, as it were) items of information that had to wait until Calculus for a formal proof.

We're now faced with much the same situation with regard to the function $y = \ln x$ and its properties, which we have encountered several times in our exploration of Calculus so far.

We begin the formal treatment with the rational function $f(x) = \frac{1}{x}$ which is continuous on $(0, \infty)$.

Next we define a function $G(x) = \int_{1}^{x} \frac{1}{t} dt$ for all x > 0. Note, in particular, that $G(1) = \int_{1}^{1} \frac{1}{t} dt = 0$.

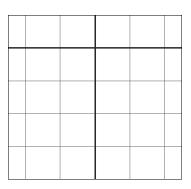
By Theorem 5.12 (section 5.4) *G* is differentiable on $(0, \infty)$, and $\frac{dG}{dx} = \frac{1}{x}$.

Since we also have $\ln(1) = 0$ and $\frac{d}{dx} [\ln x] = \frac{1}{x}$, by Theorem 4.6 (which implies uniqueness) we can define

$$\ln(x) = \int_1^x \frac{1}{t} dt$$

See the text for development of the graph of $y = \ln x$, including limits, and the connection to Euler's number *e*.

Example A: Given $f(x) = \ln(1 - x^2)$ find the domain, intercepts, relative extreme values, inflection points, concavity and asymptotes, then draw the graph.



One more important "silver platter" item that we can now prove.

Fix a number b > 0. Then for x > 0, let $g(x) = \ln(bx)$. Next, $g'(x) = \frac{1}{bx} * \frac{d}{dx}(bx) = \frac{1}{bx} * b = \frac{1}{x}$ [Chain Rule].

Since $\frac{d}{dx}[g(x)] = \frac{1}{x} = \frac{d}{dx}[\ln x]$, then by Theorem 4.6 (section 4.3) we can state that $g(x) = \ln(bx) = \ln(x) + C$. For x = 1, we get $g(1) = \ln(b) = \ln(1) + C \implies \ln(bx) = \ln(b) + \ln(x)$ for all x.

Theorem 5.21: "For all b > 0 and c > 0, $\ln bc = \ln b + \ln c$."

This is the **Law of Logarithms** introduced in Algebra/Precalculus and re-introduced in the text in Chapter 1. Your text notes that the other properties of logarithms can be easily derived from the Law of Logarithms.

The natural logarithm function, $\ln(x)$, can be used in a process called *logarithmic differentiation* to ease the differentiation of products and quotients involving multiple terms. Note that for any function $g(x) = \ln[f(x)]$,

by the chain rule
$$g'(x) = \frac{1}{f(x)} * f'(x) = \frac{f'(x)}{f(x)}$$
.

Example B: Given the polynomial $g(x) = (x+3)(x+1)^2(x-1)^3$, find the first derivative. Using logarithmic differentiation,

(a) Take the natural logarithm of both sides and use logarithm properties to expand:

$$\ln[g(x)] = \ln[(x+3)(x+1)^2(x-1)^3] = \ln(x+3) + 2\ln(x+1) + 3\ln(x-1)$$

(b) Take the derivative of $\ln [g(x)]$: $\frac{g'(x)}{g(x)} = \frac{1}{x+3} + \frac{2}{x+1} + \frac{3}{x-1}$

(c) Solve algebraically for g'(x): $g'(x) = \left[\frac{1}{x+3} + \frac{2}{x+1} + \frac{3}{x-1}\right] * g(x)$

(d) Back-substitute for g(x): $g'(x) = \left[\frac{1}{x+3} + \frac{2}{x+1} + \frac{3}{x-1}\right] * \left[(x+3)(x+1)^2(x-1)^3\right]$

Example C: Use logarithmic differentiation to find the first derivative of $h(x) = \frac{(x^3 - 2)(x^2 - 3)^4}{\sqrt{8x - 5}}$.

answer:
$$\left[\frac{3x^2}{x^3-2} + \frac{8x}{x^2-3} - \frac{4}{8x-5}\right] * \frac{(x^3-2)(x^2-3)^4}{\sqrt{8x-5}}$$

Now, we consider $g(x) = \ln(-x)$, with domain $(-\infty, 0)$.

Using the Chain Rule, $g'(x) = \frac{1}{-x} * \frac{d}{dx}(-x) = \frac{1}{-x} * (-1) = \frac{1}{x}$. Recall also that $\frac{1}{x} = \frac{d}{dx}(\ln x)$. We conclude that the function $\ln |x|$, which equals $\ln(-x)$ on $(-\infty, 0)$ and equals $\ln(x)$ on $(0, \infty)$, is an antiderivative of $y = \frac{1}{x}$ on its entire domain, $(-\infty, 0)$ union $(0, \infty)$.

As a result, when we integrate $\frac{1}{x}$, we no longer need to limit ourselves to domains of positive values as we did in Lecture 5.5 Example H and Lecture 5.6 Example D. We can now state $\int \frac{1}{x} dx = \ln|x| + C$ for all $x \neq 0$.

Examples D: Evaluate $\int \frac{5}{x} dx$ and $\int \frac{1}{6x} dx$. answers: $5 \ln |x| + C$, $\frac{1}{6} \ln |x| + C$

Example E: Evaluate $\int (4(1-2x)^{-1}) dx$. answer: $-2\ln|1-2x|+C$

Example F: Evaluate
$$\int_{-2}^{1} \frac{x^2}{x^3 - 8} dx$$
. answer: $\frac{1}{3} \ln \left(\frac{7}{16} \right)$

Example G: Evaluate $\int \tan x \, dx$. answer: $-\ln |\cos x| + C = \ln |\sec x| + C$