Calculus 140, section 5.7 The Logarithm

notes prepared by Tim Pilachowski
In Algebra/Precalculus classes, you were handed (on a silver platter, as it were) items of information that had to wait until Calculus for a formal proof.

We're now faced with much the same situation with regard to the function $y=\ln x$ and its properties, which we have encountered several times in our exploration of Calculus so far.
We begin the formal treatment with the rational function $f(x)=\frac{1}{x}$ which is continuous on $(0, \infty)$.
Next we define a function $G(x)=\int_{1}^{x} \frac{1}{t} d t$ for all $x>0$. Note, in particular, that $G(1)=\int_{1}^{1} \frac{1}{t} d t=0$.
By Theorem 5.12 (section 5.4) G is differentiable on $(0, \infty)$, and $\frac{d G}{d x}=\frac{1}{x}$.
Since we also have $\ln (1)=0$ and $\frac{d}{d x}[\ln x]=\frac{1}{x}$, by Theorem 4.6 (which implies uniqueness) we can define

$$
\ln (x)=\int_{1}^{x} \frac{1}{t} d t
$$

See the text for development of the graph of $y=\ln x$, including limits, and the connection to Euler's number e.
Example A: Given $f(x)=\ln \left(1-x^{2}\right)$ find the domain, intercepts, relative extreme values, inflection points, concavity and asymptotes, then draw the graph.

One more important "silver platter" item that we can now prove.
Fix a number $b>0$. Then for $x>0$, let $g(x)=\ln (b x)$. Next, $g^{\prime}(x)=\frac{1}{b x} * \frac{d}{d x}(b x)=\frac{1}{b x} * b=\frac{1}{x}$ [Chain Rule]. Since $\frac{d}{d x}[g(x)]=\frac{1}{x}=\frac{d}{d x}[\ln x]$, then by Theorem 4.6 (section 4.3) we can state that $g(x)=\ln (b x)=\ln (x)+C$.
For $x=1$, we get $g(1)=\ln (b)=\ln (1)+C \Rightarrow \ln (b x)=\ln (b)+\ln (x)$ for all x.
Theorem 5.21: "For all $b>0$ and $c>0, \ln b c=\ln b+\ln c$."
This is the Law of Logarithms introduced in Algebra/Precalculus and re-introduced in the text in Chapter 1. Your text notes that the other properties of logarithms can be easily derived from the Law of Logarithms.

The natural logarithm function, $\ln (x)$, can be used in a process called logarithmic differentiation to ease the differentiation of products and quotients involving multiple terms. Note that for any function $g(x)=\ln [f(x)]$, by the chain rule $g^{\prime}(x)=\frac{1}{f(x)} * f^{\prime}(x)=\frac{f^{\prime}(x)}{f(x)}$.

Example B: Given the polynomial $g(x)=(x+3)(x+1)^{2}(x-1)^{3}$, find the first derivative.
Using logarithmic differentiation,
(a) Take the natural logarithm of both sides and use logarithm properties to expand:

$$
\ln [g(x)]=\ln \left[(x+3)(x+1)^{2}(x-1)^{3}\right]=\ln (x+3)+2 \ln (x+1)+3 \ln (x-1)
$$

(b) Take the derivative of $\ln [g(x)]: \frac{g^{\prime}(x)}{g(x)}=\frac{1}{x+3}+\frac{2}{x+1}+\frac{3}{x-1}$
(c) Solve algebraically for $g^{\prime}(x): g^{\prime}(x)=\left[\frac{1}{x+3}+\frac{2}{x+1}+\frac{3}{x-1}\right] * g(x)$
(d) Back-substitute for $g(x)$: $g^{\prime}(x)=\left[\frac{1}{x+3}+\frac{2}{x+1}+\frac{3}{x-1}\right] *\left[(x+3)(x+1)^{2}(x-1)^{3}\right]$

Example C: Use logarithmic differentiation to find the first derivative of $h(x)=\frac{\left(x^{3}-2\right)\left(x^{2}-3\right)^{4}}{\sqrt{8 x-5}}$.
answer: $\left[\frac{3 x^{2}}{x^{3}-2}+\frac{8 x}{x^{2}-3}-\frac{4}{8 x-5}\right] * \frac{\left(x^{3}-2\right)\left(x^{2}-3\right)^{4}}{\sqrt{8 x-5}}$

Now, we consider $g(x)=\ln (-x)$, with domain $(-\infty, 0)$.
Using the Chain Rule, $g^{\prime}(x)=\frac{1}{-x} * \frac{d}{d x}(-x)=\frac{1}{-x} *(-1)=\frac{1}{x}$. Recall also that $\frac{1}{x}=\frac{d}{d x}(\ln x)$.
We conclude that the function $\ln |x|$, which equals $\ln (-x)$ on $(-\infty, 0)$ and equals $\ln (x)$ on $(0, \infty)$, is an antiderivative of $y=\frac{1}{x}$ on its entire domain, $(-\infty, 0)$ union $(0, \infty)$.
As a result, when we integrate $\frac{1}{x}$, we no longer need to limit ourselves to domains of positive values as we did in Lecture 5.5 Example H and Lecture 5.6 Example D. We can now state $\int \frac{1}{x} d x=\ln |x|+C$ for all $x \neq 0$.

Examples D: Evaluate $\int \frac{5}{x} d x$ and $\int \frac{1}{6 x} d x$. answers: $5 \ln |x|+C, \frac{1}{6} \ln |x|+C$

Example E: Evaluate $\int\left(4(1-2 x)^{-1}\right) d x$. answer: $-2 \ln |1-2 x|+C$

Example F: Evaluate $\int_{-2}^{1} \frac{x^{2}}{x^{3}-8} d x$. answer: $\frac{1}{3} \ln \left(\frac{7}{16}\right)$

Example G: Evaluate $\int \tan x d x$. answer: $-\ln |\cos x|+C=\ln |\sec x|+C$

