Calculus 241, section 11.2 Vectors in Space

notes by Tim Pilachowski
Back to three-dimensional (3-D) space, and our 3-D grid (shown in standard orientation below).

Consider two points, $P=(3,2,1)$ and $Q=(-1,4,-5)$.
If we connect these points with an arrow pointing from P to Q, we have a visual representation of a vector.
More formally: "A vector is an ordered triple $\left(a_{1}, a_{2}, a_{3}\right)$ of numbers. The numbers a_{1}, a_{2}, and a_{3} are called the components of the vector. The vector $\overrightarrow{P Q}$ associated with the directed line segment with initial point $P=\left(x_{0}, y_{0}, z_{0}\right)$ and terminal point $Q=\left(x_{1}, y_{1}, z_{1}\right)$ is $\left(x_{1}-x_{0}, y_{1}-y_{0}, z_{1}-z_{0}\right)$." [Definition 11.1]

Example A. Consider points $P=(3,2,1)$ and $Q=(-1,4,-5)$. Identify the vectors $\overrightarrow{P Q}$ and $\overrightarrow{O P}$.

Note that even though the expressions of $\overrightarrow{O P}=(3,2,1)$ and $P=(3,2,1)$ look the same, $\overrightarrow{O P}$ expresses the components of a vector and P gives us the coordinates of a point. You must pay attention to context!

Two vectors $\left(a_{1}, a_{2}, a_{3}\right)$ and $\left(b_{1}, b_{2}, b_{3}\right)$ are equal if and only if (iff) $a_{1}=b_{1}, a_{2}=b_{2}$, and $a_{3}=b_{3}$.

Example A extended. Given $R=(-3,5,-2)$ and $S=(-7,9,-8)$, and P and Q as given above, determine whether $\overrightarrow{R S}=\overrightarrow{P Q}$.

Uses of vectors include a velocity vector has both direction and magnitude (= speed) a force vector has both direction and magnitude
(Remember these from Calc I and Calc II respectively?)
A quick observation about the notation for vectors.
In print, vectors will often be written as bold-print letters, e.g. a, \mathbf{b}, \mathbf{c}, to distinguish them from the components of a vector a, b, and c. In writing, vectors should be written with arrows: $\vec{a}, \vec{b}, \vec{c}$.
The zero vector $(0,0,0)=\mathbf{0}=\overrightarrow{0}$.
Side note: Any two distinct, connected vectors will lie in the same plane. (Connected = common starting point and/or ending point.) We'll spend time later finding the equation of a plane given two connected vectors.

Definition 11.2: The length (or norm) of a vector $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ is $\|\mathbf{a}\|=\|\vec{a}\|=\sqrt{\left(a_{1}\right)^{2}+\left(a_{2}\right)^{2}+\left(a_{3}\right)^{2}}$.

Example A again. $P=(3,2,1)$ and $Q=(-1,4,-5)$. Find $\|\overrightarrow{P Q}\|$.

Note that, in general, given any two points P and Q, the length (norm) of the vector, $\|\overrightarrow{P Q}\|$, = distance between the two points, $|P Q|$.

Definition: A unit vector has length (norm) $=1$.
We will denote three special unit vectors, corresponding to the three axes of our 3-D grid:

$$
\vec{i}=(1,0,0), \vec{j}=(0,1,0), \vec{k}=(0,0,1)
$$

Is it obvious that the lengths of \mathbf{i}, \mathbf{j}, and \mathbf{k} all equal 1 ?
Definition 11.3: We now define three arithmetic combinations of vectors: sum, difference, and scalar multiple = $c \mathbf{a}=c \vec{a}$.

Example B. Given $\vec{a}=(4,2,-6), \vec{b}=(1,3,5)$, find $\mathbf{a}+\mathbf{b}, \mathbf{a}-\mathbf{b}, 2 \mathbf{a}$.

We can give a geometric interpretation to these three arithmetic combinations of vectors.

Vector arithmetic has "laws" (identities) similar to those of elementary school arithmetic: additive \& multiplicative identities, commutativity, associativity, distribution of multiplication over addition.

$$
\begin{array}{cc}
\mathbf{0}+\mathbf{a}=\overrightarrow{0}+\vec{a}=\mathbf{a}+\mathbf{0}=\vec{a}+\overrightarrow{0}=\mathbf{a} & \mathbf{a}+\mathbf{b}=\vec{a}+\vec{b}=\mathbf{b}+\mathbf{a}=\vec{b}+\vec{a} \\
\mathbf{a}-\mathbf{b}=\vec{a}-\vec{b}=\mathbf{a}+(-1) \mathbf{b}=\vec{a}+(-1) \vec{b} & (\mathbf{a}+\mathbf{b})+\mathbf{c}=(\vec{a}+\vec{b})+\vec{c}=\mathbf{a}+(\mathbf{b}+\mathbf{c})=\vec{a}+(\vec{b}+\vec{c}) \\
0 \mathbf{a}=0 \vec{a}=\mathbf{0}=\overrightarrow{0} & 1 \mathbf{a}=1 \vec{a}=\mathbf{a}=\vec{a} \\
c(\mathbf{a}+\mathbf{b})=c(\vec{a}+\vec{b})=c \mathbf{a}+c \mathbf{b}=c \vec{a}+c \vec{b}
\end{array}
$$

Using the arithmetic operations above, any vector $\mathbf{a}=\vec{a}$ can be expressed as a combination of unit vectors $\mathbf{i}=\vec{i}, \mathbf{j}=\vec{j}, \mathbf{k}=\vec{k}$, which will be very useful as we progress through the semester.

Example B revisited. Given $\vec{a}=(4,2,-6), \vec{b}=(1,3,5)$, express $\mathbf{a}, \mathbf{a}+\mathbf{b}$, and $2 \mathbf{a}$ as arithmetic combinations of unit vectors \mathbf{i}, \mathbf{j}, and \mathbf{k}.

In general, we can say that

$$
\begin{gathered}
\vec{a}+\vec{b}=\left(a_{1}+b_{1}\right) \vec{i}+\left(a_{2}+b_{2}\right) \vec{j}+\left(a_{3}+b_{3}\right) \vec{k} \text { and } \\
c(\vec{a})=c\left(a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}\right)=c a_{1} \vec{i}+c a_{2} \vec{j}+c a_{3} \vec{k} .
\end{gathered}
$$

Note also that $\|\vec{a}\|=\left\|a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}\right\|=\sqrt{\left(a_{1}\right)^{2}+\left(a_{2}\right)^{2}+\left(a_{3}\right)^{2}}$. [definition/formula for norm of a vector]
Also, we have $\|c \vec{a}\|=\left\|c a_{1} \vec{i}+c a_{2} \vec{j}+c a_{3} \vec{k}\right\|=\sqrt{\left(c a_{1}\right)^{2}+\left(c a_{2}\right)^{2}+\left(c a_{3}\right)^{2}}=|c|\|\vec{a}\|$.
By implication, when multiplied by a scalar $c>0$, the direction of a vector does not change, but the norm (length/magnitude) is multiplied by c. If we think in terms of a velocity vector, the object in motion is still moving along the same path, but with an increase or decrease in speed.
When multiplied by a scalar $c<0$, the direction is reversed, and the magnitude is multiplied by $|c|$.
We can give a geometric interpretation to scalar multiplication and addition of vectors, $c \mathbf{a}+\mathbf{b}$.

Definition 11.4: Two nonzero vectors \vec{a} and \vec{b} are parallel iff there is a scalar c such that $\vec{b}=c \vec{a}$.

Example C. Given $\vec{a}=4 i-6 j+2 k, \vec{b}=-6 i+9 j-3 k$, determine whether or not \mathbf{a} and \mathbf{b} are parallel.

Definition: The unit vector in the direction of a non-zero vector \vec{a} is $\frac{\vec{a}}{\|\vec{a}\|}$.
Example C extended. Given $\vec{a}=4 i-6 j+2 k$, find the unit vector in the direction of \mathbf{a}.

Recall the 2-D Cartesian grid encountered in Calc I and Calc II, and rectangular vs. polar coordinates. We can think of a vector in $x y$ plane as a directed line segment connecting the origin to a point, and use trigonometric functions and/or polar coordinates to express the vector. We'd have θ (in radians) as the angle between the horizontal axis and the vector, r as the norm of the vector, and $r \cos \theta$ and $r \sin \theta$, respectively, as the \mathbf{i} and \mathbf{j} components of the vector. (See text example 7 and practice execise \# 28.)

Recall from earlier: Uses of vectors include force vectors, which have direction, and magnitude.
Example D. Stan \& Oliver are moving a piano (on wheels) by tugging on ropes attached to it. Stan is holding his 5 foot rope at a height of 3 feet above ground and 3 feet to the left of the piano, exerting a force of 6 pounds. Oliver is holding his 4 foot rope at a height of 2 feet above ground and 2 feet to the right of the piano, exerting a force of 4 pounds. Find the resulting force being exerted on the piano.

