Calculus 241, section 11.3 Dot Product

notes by Tim Pilachowski
Here's a basic question: Now that we have sum, difference and scalar multiplication of vectors, is there a way to describe vector times vector multiplication? The answer is, "Yes." In fact, there are two ways.

Definition 11.5: Let $\vec{a}=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}$ and $\vec{b}=b_{1} \vec{i}+b_{2} \vec{j}+b_{3} \vec{k}$ be two vectors.
The dot product (or scalar product or inner product) of \vec{a} and $\vec{b}=\vec{a} \bullet \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$.
Example A. Given $\vec{a}=4 \vec{i}+2 \vec{j}-6 \vec{k}$ and $\vec{b}=\vec{i}+3 \vec{j}-5 \vec{k}$, find $\vec{a} \bullet \vec{b}$.

Important note: The dot product of two vectors is not a vector but a number (scalar).
The expected properties apply to dot products.
Identities:

$$
\begin{aligned}
& \vec{a} \bullet \vec{i}=\vec{i} \bullet \vec{a}=a_{1} \quad \vec{a} \bullet \vec{j}=\vec{j} \bullet \vec{a}=a_{2} \quad \vec{a} \bullet \vec{k}=\vec{k} \bullet \vec{a}=a_{3} \\
& \vec{i} \bullet \vec{j}=\vec{j} \bullet \vec{k}=\vec{k} \bullet \vec{i}=0 \quad \vec{i} \bullet \vec{i}=\vec{j} \bullet \vec{j}=\vec{k} \bullet \vec{k}=1
\end{aligned}
$$

Commutativity: $\quad \vec{a} \bullet \vec{b}=\vec{b} \bullet \vec{a}$
Associativity: $\quad(c \vec{a}) \bullet \vec{b}=c(\vec{a} \bullet \vec{b})=\vec{a} \bullet(c \vec{b})$
Distribution

$$
\vec{a} \bullet(\vec{b}+\vec{c})=\vec{a} \bullet \vec{b}+\vec{a} \bullet \vec{c},(\vec{a}+\vec{b}) \bullet \vec{c}=\vec{a} \bullet \vec{c}+\vec{b} \bullet \vec{c}
$$

Definition: The angle between two nonzero vectors \vec{a} and \vec{b} is defined to be the angle $\theta, 0 \leq \theta \leq \pi$, formed by the directed line segments whose initial points are the origin.

Theorem 11.6. Let $\vec{a}=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}$ and $\vec{b}=b_{1} \vec{i}+b_{2} \vec{j}+b_{3} \vec{k}$ be two non-zero vectors, and let θ be the angle between \vec{a} and \vec{b}. Then, $\vec{a} \bullet \vec{b}=\|\vec{a}\|\|\vec{b}\| \cos \theta$.

The text does the proof using the Law of Cosines.

To find the angle between nonzero vectors, use $\vec{a} \bullet \vec{b}=\|\vec{a}\|\|\vec{b}\| \cos \theta$ and solve for θ.

Example B. (11.1 A revisited). Given $P=(3,2,1)$ and $Q=(-1,4,-5)$, verify $\overrightarrow{P Q} \bullet \overrightarrow{O Q}=\|\overrightarrow{P Q}\|\|\overrightarrow{O Q}\| \cos \frac{\pi}{6}$ and $\overrightarrow{O Q} \bullet \overrightarrow{O P}=\|\overrightarrow{O Q}\|\|\overrightarrow{O P}\| \cos \frac{\pi}{2}$.

The second dot product above illustrates Corollary 11.7, part a.
Corollary 11.7: a. Two nonzero vectors \mathbf{a} and \mathbf{b} are perpendicular iff $\vec{a} \bullet \vec{b}=0$.
b. For any vector $\vec{a}, \vec{a} \bullet \vec{a}=\|\vec{a}\|^{2}$, or equivalently $\|\vec{a}\|=\sqrt{\vec{a} \bullet \vec{a}}$

To prove that two nonzero vectors are perpendicular, it is sufficient to show that $\vec{a} \bullet \vec{b}=0$.
Definition 11.8. Let \vec{a} be a nonzero vector. The projection of a vector \vec{b} onto \vec{a} is the vector $\overrightarrow{\operatorname{pr}_{a} b}$ defined by $\overrightarrow{\operatorname{pr}_{a} b}=\left(\frac{\vec{a} \bullet \vec{b}}{\|\vec{a}\|^{2}}\right) \vec{a}$.

Note that the projection of \vec{b} onto \vec{a} is a scalar multiple of \vec{a}.
Example A extended. Let $\vec{a}=4 \vec{i}+2 \vec{j}-6 \vec{k}$ and $\vec{b}=1 \vec{i}+3 \vec{j}-5 \vec{k}$. Find $\overrightarrow{\operatorname{pr}_{a} b}$.

Side note: The text develops a simple formula for the norm of a projection, $\left\|\overrightarrow{\operatorname{pr}_{a} b}\right\|=\left(\frac{|\vec{a} \bullet \vec{b}|}{\|\vec{a}\|^{2}}\right)\|\vec{a}\|=\frac{|\vec{a} \bullet \vec{b}|}{\|\vec{a}\|}$.

If two vectors \vec{a} and \vec{a}^{\prime} are perpendicular, then any nonzero vector \vec{b} lying in the same plane as \vec{a} and \vec{a}^{\prime} can be resolved into vectors parallel to \vec{a} and \vec{a}^{\prime} with the formula

$$
\vec{b}=\overrightarrow{\mathrm{pr}_{a} b}+\overrightarrow{\mathrm{pr}_{a^{\prime}} b}
$$

Example C. Given $\vec{a}=4 \vec{i}+2 \vec{j}, \vec{a}^{\prime}=\vec{i}-2 \vec{j}$, and $\vec{b}=\vec{i}+3 \vec{j}$, resolve \vec{b} into vectors parallel to \vec{a} and \vec{a}^{\prime}.

See the text for an explanation and Example 7 involving work done by a constant force \mathbf{F} on an object moving along a line from P to Q. The solution depends upon resolving \mathbf{F} into a vector parallel to $\overrightarrow{P Q}$.

