Calculus 241, section 11.3 Dot Product

notes by Tim Pilachowski

Here's a basic question: Now that we have sum, difference and scalar multiplication of vectors, is there a way to describe vector times vector multiplication? The answer is, "Yes." In fact, there are two ways.

Definition 11.5: Let $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$ and $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$ be two vectors.

The dot product (or scalar product or inner product) of \vec{a} and $\vec{b} = \vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$.

Example A. Given $\vec{a} = 4\vec{i} + 2\vec{j} - 6\vec{k}$ and $\vec{b} = \vec{i} + 3\vec{j} - 5\vec{k}$, find $\vec{a} \cdot \vec{b}$.

Important note: The dot product of two vectors is not a vector but a number (scalar).

The expected properties apply to dot products.

Identities:	$\vec{a} \bullet \vec{i} = \vec{i} \bullet \vec{a} = a_1$ $\vec{a} \bullet \vec{j} = \vec{j} \bullet \vec{a} = a_2$ $\vec{a} \bullet \vec{k} = \vec{k} \bullet \vec{a} = a_3$
	$\vec{i} \bullet \vec{j} = \vec{j} \bullet \vec{k} = \vec{k} \bullet \vec{i} = 0$ $\vec{i} \bullet \vec{i} = \vec{j} \bullet \vec{j} = \vec{k} \bullet \vec{k} = 1$
Commutativity:	$\vec{a} \bullet \vec{b} = \vec{b} \bullet \vec{a}$
Associativity:	$(c \vec{a}) \bullet \vec{b} = c \left(\vec{a} \bullet \vec{b} \right) = \vec{a} \bullet \left(c \vec{b} \right)$
Distribution	$\vec{a} \bullet \left(\vec{b} + \vec{c}\right) = \vec{a} \bullet \vec{b} + \vec{a} \bullet \vec{c} , \ \left(\vec{a} + \vec{b}\right) \bullet \vec{c} = \vec{a} \bullet \vec{c} + \vec{b} \bullet \vec{c}$

Definition: The **angle** between two nonzero vectors \vec{a} and \vec{b} is defined to be the angle θ , $0 \le \theta \le \pi$, formed by the directed line segments whose initial points are the origin.

Theorem 11.6. Let $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$ and $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$ be two non-zero vectors, and let θ be the angle between \vec{a} and \vec{b} . Then, $\vec{a} \cdot \vec{b} = \|\vec{a}\| \|\vec{b}\| \cos \theta$.

The text does the proof using the Law of Cosines.

To find the angle between nonzero vectors, use $\vec{a} \cdot \vec{b} = \|\vec{a}\| \|\vec{b}\| \cos \theta$ and solve for θ .

Example B. (11.1 A revisited). Given P = (3, 2, 1) and Q = (-1, 4, -5), verify $\overrightarrow{PQ} \bullet \overrightarrow{OQ} = \left\| \overrightarrow{PQ} \right\| \left\| \overrightarrow{OQ} \right\| \cos \frac{\pi}{6}$ and $\overrightarrow{OQ} \bullet \overrightarrow{OP} = \left\| \overrightarrow{OQ} \right\| \left\| \overrightarrow{OP} \right\| \cos \frac{\pi}{2}$.

The second dot product above illustrates Corollary 11.7, part a.

Corollary 11.7: a. Two nonzero vectors **a** and **b** are perpendicular iff $\vec{a} \cdot \vec{b} = 0$.

b. For any vector \vec{a} , $\vec{a} \bullet \vec{a} = \|\vec{a}\|^2$, or equivalently $\|\vec{a}\| = \sqrt{\vec{a} \bullet \vec{a}}$

To prove that two nonzero vectors are perpendicular, it is sufficient to show that $\vec{a} \cdot \vec{b} = 0$.

Definition 11.8. Let \vec{a} be a nonzero vector. The **projection** of a vector \vec{b} onto \vec{a} is the vector $\overrightarrow{\text{pr}_a b}$ defined by $\overrightarrow{\text{pr}_a b} = \left(\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|^2}\right) \vec{a}.$

Note that the projection of \vec{b} onto \vec{a} is a scalar multiple of \vec{a} . Example A extended. Let $\vec{a} = 4\vec{i} + 2\vec{j} - 6\vec{k}$ and $\vec{b} = 1\vec{i} + 3\vec{j} - 5\vec{k}$. Find $\overrightarrow{\text{pr}_a b}$.

Side note: The text develops a simple formula for the norm of a projection, $\|\overrightarrow{\operatorname{pr}_a b}\| = \left(\frac{\left|\vec{a} \cdot \vec{b}\right|}{\left\|\vec{a}\right\|^2}\right) \|\vec{a}\| = \frac{\left|\vec{a} \cdot \vec{b}\right|}{\left\|\vec{a}\right\|}.$

If two vectors \vec{a} and \vec{a}' are perpendicular, then any nonzero vector \vec{b} lying in the same plane as \vec{a} and \vec{a}' can be **resolved** into vectors parallel to \vec{a} and \vec{a}' with the formula

$$\overline{b} = \mathrm{pr}_a b + \mathrm{pr}_{a'} b$$

Example C. Given $\vec{a} = 4\vec{i} + 2\vec{j}$, $\vec{a}' = \vec{i} - 2\vec{j}$, and $\vec{b} = \vec{i} + 3\vec{j}$, resolve \vec{b} into vectors parallel to \vec{a} and \vec{a}' .

See the text for an explanation and Example 7 involving work done by a constant force **F** on an object moving along a line from *P* to *Q*. The solution depends upon resolving **F** into a vector parallel to \overrightarrow{PQ} .