Math 241 Chapter 11

Dr. Justin O. Wyss-Gallifent
§11.1 Cartesian Coordinates in Space

1. Preliminaries: How to plot points in 3-space, the coordinate planes, the first octant. Emphasize how perspective can be confusing at first.
2. Distance between points: $|P Q|=\sqrt{\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}+\left(z_{1}-z_{0}\right)^{2}}$
3. Equation of a circle, a closed disk, a sphere and a closed ball. Pictures of all.

§11.2 Vectors in Space

1. Definition of a vector as a triple of numbers. The notation \bar{a} or \vec{a}. We can add and subtract vectors by adding and subtracting components and we can multiply a scalar by a vector by multiplying by all the components. Three special vectors are $\hat{\imath}=(1,0,0), \hat{\jmath}=(0,1,0)$ and $\hat{k}=(0,0,1)$. Then every vector can be written as $\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$. Vectors are not necessarily anchored anywhere though often we anchor them somewhere (the origin, for example) for some reason.
2. Basic properties and associated definitions:
(a) The zero vector is $\overline{0}=0 \hat{\imath}+0 \hat{\jmath}+0 \hat{k}$.
(b) The length of a vector is $\|\bar{a}\|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}$.
(c) A unit vector has length 1. If a vector \bar{a} is given we can create a unit vector in the same direction by doing $\bar{a} /\|\bar{a}\|$.
(d) Two vectors are parallel if they are nonzero multiple of one another. In other words $\bar{a}=c \bar{b}$ with $c \neq 0$.
(e) The vector pointing from $P=\left(a_{1}, a_{2}, a_{3}\right)$ to $Q=\left(b_{1}, b_{2}, b_{3}\right)$ is $\overrightarrow{P Q}=\left(b_{1}-a_{1}\right) \hat{\imath}+\left(b_{2}-a_{2}\right) \hat{\jmath}+$ $\left(b_{3}-a_{3}\right) \hat{k}$.
(f) $\overline{0}+\bar{a}=\bar{a}=\bar{a}+\overline{0}$
(g) $\bar{a}+\bar{b}=\bar{b}+\bar{a}$
(h) $c(\bar{a}+\bar{b})=c \bar{a}+c \bar{b}$
(i) $0 \bar{a}=\overline{0}$
(j) $1 \bar{a}=\bar{a}$
(k) $\bar{a}+(\bar{b}+\bar{c})=(\bar{a}+\bar{b})+\bar{c}$
3. Geometric interpretation of $\bar{a}+\bar{b}$, of $\bar{a}-\bar{b}$ and $c \bar{a}$.
§11.3 The Dot Product
4. Definition of $\bar{a} \cdot \bar{b}$.
5. Basic properties:
(a) $\bar{a} \cdot \bar{b}=\bar{b} \cdot \bar{a}$
(b) $\bar{a} \cdot(\bar{b}+\bar{c})=\bar{a} \cdot \bar{b}+\bar{a} \cdot \bar{c}$
(c) $(\bar{b}+\bar{c}) \cdot \bar{a}=\bar{b} \cdot \bar{a}+\bar{c} \cdot \bar{a}$
(d) $c(\bar{a} \cdot \bar{b})=(c \bar{a}) \cdot \bar{b}=\bar{a} \cdot(c \bar{b})$
6. Additional Properties:
(a) If θ is the angle between \bar{a} and \bar{b} (anchored at the same point) then $\bar{a} \cdot \bar{b}=\|\bar{a}\|\|\bar{b}\| \cos \theta$.
(b) \bar{a} and \bar{b} are perpendicular iff $\bar{a} \cdot \bar{b}=0$.
(c) $\bar{a} \cdot \bar{a}=\|\bar{a}\|^{2}$.
(d) Definition of projection of \bar{b} onto \bar{a} and formula $\operatorname{Pr}_{\bar{a}} \bar{b}=\left(\frac{\bar{a} \cdot \bar{b}}{\bar{a} \cdot \bar{a}}\right) \bar{a}$.

§11.4 The Cross Product

1. Definition of $\bar{a} \times \bar{b}$.
2. Basic properties:
(a) $\bar{a} \times \bar{a}=\overline{0}$
(b) $\bar{a} \times \bar{b}=-(\bar{b} \times \bar{a})$
(c) $\bar{a} \times(\bar{b}+\bar{c})=\bar{a} \times \bar{b}+\bar{a} \times \bar{c}$
(d) $(\bar{b}+\bar{c}) \times \bar{a}=\bar{b} \times \bar{a}+\bar{c} \times \bar{a}$
(e) $c(\bar{a} \times \bar{b})=(c \bar{a}) \times \bar{b}=\bar{a} \times(c \bar{b})$
3. Additional properties:
(a) $\bar{a} \times \bar{b}$ is perpendicular to both \bar{a} and \bar{b}. This is extremely useful.
(b) $\|\bar{a} \times \bar{b}\|=\|\bar{a}\|\|\mid \bar{b}\| \sin \theta$
(c) \bar{a} and \bar{b} are parallel iff $\bar{a} \times \bar{b}=\overline{0}$ but this is not a particularly good way to check.
$\S 11.5$ Lines in Space
4. Intro: What determines a line? What can we use for an equation? The fundamental way to define a line is to have a point on the line and a vector pointing along (parallel to) the line. If $\bar{a} \hat{\imath}+\bar{b} \hat{\jmath}+\bar{c} \hat{k}$ is parallel to the line and if the line contains the point $P=\left(x_{0}, y_{0}, z_{0}\right)$ then:
5. Parametric Equations: $x=x_{0}+a t, y=y_{0}+b t$ and $z=z_{0}+c t$. Each t gives a point on the line.
6. Vector Equation: $\bar{r}=\left(x_{0}+a t\right) \hat{\imath}+\left(y_{0}+b t\right) \hat{\jmath}+\left(z_{0}+c t\right) \hat{k}$. Each t gives a vector which points from the origin to a point on the line. This is far from unique since on any given line there are many points and many vectors pointing along the line.
7. Symmetric Equations: Solve for t in each of the parametric equations and set them all equal. If one doesn't have a t in it just leave it be. If two do not then leave those alone and don't even write the third because that variable could be anything.
8. If a line has point P and vector \bar{L} then the distance from another point Q to the line is $\frac{\|\bar{L} \times \overrightarrow{P Q}\|}{\|L\|}$.

§11.6 Planes in Space

1. A plane is determined by a point $P=\left(x_{0}, y_{0}, z_{0}\right)$ and a normal vector $\bar{N}=a \hat{\imath}+b \hat{\jmath}+c \hat{k}$ which is perpendicular to the plane. A point $Q=(x, y, z)$ is on the plane iff the vector from P to Q is perpendicular to \bar{N}, meaning $(a \hat{\imath}+b \hat{\jmath}+c \hat{k}) \cdot \overrightarrow{P Q}=0$ which is $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$. This is often rearranged to get $a x+b y+c z=d$.
2. If a plane has point P and normal vector \bar{N} then the distance from another point Q to the plane is $\frac{|\bar{N} \cdot \overrightarrow{P Q}|}{\|\bar{N}\|}$.
3. Sketching planes:

- Those like $a x+b y+c z=d$, draw a little triangle using the intercepts.
- Those like $z=0$ or $x=2$ or $y=-3$, parallel to the coordinate planes.
- Those like $2 x+y=10$, draw a line and extend in the direction of the missing variable.

