Math 241 Chapter 11

Dr. Justin O. Wyss-Gallifent

§11.1 Cartesian Coordinates in Space

- 1. Preliminaries: How to plot points in 3-space, the coordinate planes, the first octant. Emphasize how perspective can be confusing at first.
- 2. Distance between points: $|PQ| = \sqrt{(x_1 x_0)^2 + (y_1 y_0)^2 + (z_1 z_0)^2}$
- 3. Equation of a circle, a closed disk, a sphere and a closed ball. Pictures of all.
- §11.2 Vectors in Space
 - 1. Definition of a vector as a triple of numbers. The notation \bar{a} or \vec{a} . We can add and subtract vectors by adding and subtracting components and we can multiply a scalar by a vector by multiplying by all the components. Three special vectors are $\hat{i} = (1,0,0)$, $\hat{j} = (0,1,0)$ and $\hat{k} = (0,0,1)$. Then every vector can be written as $\bar{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$. Vectors are not necessarily anchored anywhere though often we anchor them somewhere (the origin, for example) for some reason.
 - 2. Basic properties and associated definitions:
 - (a) The zero vector is $\overline{0} = 0 \hat{i} + 0 \hat{j} + 0 \hat{k}$.
 - (b) The *length* of a vector is $||\bar{a}|| = \sqrt{a_1^2 + a_2^2 + a_3^2}$.
 - (c) A unit vector has length 1. If a vector \bar{a} is given we can create a unit vector in the same direction by doing $\bar{a}/||\bar{a}||$.
 - (d) Two vectors are *parallel* if they are nonzero multiple of one another. In other words $\bar{a} = c\bar{b}$ with $c \neq 0$.
 - (e) The vector pointing from $P = (a_1, a_2, a_3)$ to $Q = (b_1, b_2, b_3)$ is $\vec{PQ} = (b_1 a_1)\hat{i} + (b_2 a_2)\hat{j} + (b_3 a_3)\hat{k}$.
 - (f) $\bar{0} + \bar{a} = \bar{a} = \bar{a} + \bar{0}$
 - (g) $\bar{a} + \bar{b} = \bar{b} + \bar{a}$
 - (h) $c(\bar{a}+\bar{b})=c\bar{a}+c\bar{b}$
 - (i) $0\bar{a} = \bar{0}$
 - (i) $1\bar{a} = \bar{a}$
 - (k) $\bar{a} + (\bar{b} + \bar{c}) = (\bar{a} + \bar{b}) + \bar{c}$

3. Geometric interpretation of $\bar{a} + \bar{b}$, of $\bar{a} - \bar{b}$ and $c\bar{a}$.

§11.3 The Dot Product

- 1. Definition of $\bar{a} \cdot \bar{b}$.
- 2. Basic properties:
 - (a) $\bar{a} \cdot \bar{b} = \bar{b} \cdot \bar{a}$
 - (b) $\bar{a} \cdot (\bar{b} + \bar{c}) = \bar{a} \cdot \bar{b} + \bar{a} \cdot \bar{c}$
 - (c) $(\bar{b} + \bar{c}) \cdot \bar{a} = \bar{b} \cdot \bar{a} + \bar{c} \cdot \bar{a}$
 - (d) $c(\bar{a} \cdot \bar{b}) = (c\bar{a}) \cdot \bar{b} = \bar{a} \cdot (c\bar{b})$
- 3. Additional Properties:
 - (a) If θ is the angle between \bar{a} and \bar{b} (anchored at the same point) then $\bar{a} \cdot \bar{b} = ||\bar{a}||||\bar{b}||\cos\theta$.
 - (b) \bar{a} and \bar{b} are perpendicular iff $\bar{a} \cdot \bar{b} = 0$.
 - (c) $\bar{a} \cdot \bar{a} = ||\bar{a}||^2$.
 - (d) Definition of projection of \bar{b} onto \bar{a} and formula $\Pr_{\bar{a}}\bar{b} = \left(\frac{\bar{a}\cdot\bar{b}}{\bar{a}\cdot\bar{a}}\right)\bar{a}$.

§11.4 The Cross Product

- 1. Definition of $\bar{a} \times \bar{b}$.
- 2. Basic properties:
 - (a) $\bar{a} \times \bar{a} = \bar{0}$
 - (b) $\bar{a} \times \bar{b} = -(\bar{b} \times \bar{a})$
 - (c) $\bar{a} \times (\bar{b} + \bar{c}) = \bar{a} \times \bar{b} + \bar{a} \times \bar{c}$
 - (d) $(\bar{b} + \bar{c}) \times \bar{a} = \bar{b} \times \bar{a} + \bar{c} \times \bar{a}$
 - (e) $c(\bar{a} \times \bar{b}) = (c\bar{a}) \times \bar{b} = \bar{a} \times (c\bar{b})$
- 3. Additional properties:
 - (a) $\bar{a} \times \bar{b}$ is perpendicular to both \bar{a} and \bar{b} . This is extremely useful.
 - (b) $||\bar{a} \times \bar{b}|| = ||\bar{a}||||\bar{b}||\sin\theta$
 - (c) \bar{a} and \bar{b} are parallel iff $\bar{a} \times \bar{b} = \bar{0}$ but this is not a particularly good way to check.

 $\S{11.5}$ Lines in Space

- 1. Intro: What determines a line? What can we use for an equation? The fundamental way to define a line is to have a point on the line and a vector pointing along (parallel to) the line. If $\bar{a} \,\hat{i} + \bar{b} \,\hat{j} + \bar{c} \,\hat{k}$ is parallel to the line and if the line contains the point $P = (x_0, y_0, z_0)$ then:
- 2. Parametric Equations: $x = x_0 + at$, $y = y_0 + bt$ and $z = z_0 + ct$. Each t gives a point on the line.
- 3. Vector Equation: $\bar{r} = (x_0 + at) \hat{i} + (y_0 + bt) \hat{j} + (z_0 + ct) \hat{k}$. Each t gives a vector which points from the origin to a point on the line. This is far from unique since on any given line there are many points and many vectors pointing along the line.
- 4. Symmetric Equations: Solve for t in each of the parametric equations and set them all equal. If one doesn't have a t in it just leave it be. If two do not then leave those alone and don't even write the third because that variable could be anything.
- 5. If a line has point P and vector \overline{L} then the distance from another point Q to the line is $\frac{||\overline{L} \times \overrightarrow{PQ}||}{||\overline{L}||}$.
- §11.6 Planes in Space
 - 1. A plane is determined by a point $P = (x_0, y_0, z_0)$ and a normal vector $\overline{N} = a\,\hat{i} + b\,\hat{j} + c\,\hat{k}$ which is perpendicular to the plane. A point Q = (x, y, z) is on the plane iff the vector from P to Q is perpendicular to \overline{N} , meaning $(a\,\hat{i} + b\,\hat{j} + c\,\hat{k}) \cdot \overrightarrow{PQ} = 0$ which is $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$. This is often rearranged to get ax + by + cz = d.
 - 2. If a plane has point P and normal vector \overline{N} then the distance from another point Q to the plane is $\frac{|\overline{N} \cdot \overrightarrow{PQ}|}{||\overline{N}||}$.
 - 3. Sketching planes:
 - Those like ax + by + cz = d, draw a little triangle using the intercepts.
 - Those like z = 0 or x = 2 or y = -3, parallel to the coordinate planes.
 - Those like 2x + y = 10, draw a line and extend in the direction of the missing variable.