Calculus 241, section 12.1 Vector-Valued Functions Introduction

notes by Tim Pilachowski
In Algebra and Calculus I and II we had real-value functions $y=f(x)$ [rectangular coordinates] and $r=f(\theta)$ [polar coordinates]. In Calculus III (so far) we have encountered $z=f(x, y)$ [multivariable functions], expressed as coordinate points (x, y, z) and as a vector $a \vec{i}+b \vec{j}+c \vec{k}$ [directed line segment from the origin to a point].

Now we introduce a different idea, vector-valued functions, $\vec{F}(t)=f_{1}(t) \vec{i}+f_{2}(t) \vec{j}+f_{3}(t) \vec{k}$.
[See Definition 12.1 in your text.]

		Domain	Range
real-valued functions	$z=f(x, y)$	Real numbers	Real numbers
vector-valued functions	$\vec{F}(t)=f_{1}(t) \vec{i}+f_{2}(t) \vec{j}+f_{3}(t) \vec{k}$	Real numbers	Vectors

We'll call f_{1}, f_{2} and f_{3} the component functions of \vec{F}, i.e. $x=f_{1}(t), y=f_{2}(t), z=f_{3}(t)$. (Think "parametric equations".)
We've already seen a vector-valued function, in section 11.5, although we didn't call it that. A line in 3-D space can be expressed as a function of a real number t :

$$
\begin{gathered}
\vec{r}=\vec{r}_{0}+t \vec{L}=\left(x_{0}+a t\right) \vec{i}+\left(y_{0}+b t\right) \vec{j}+\left(z_{0}+c t\right) \vec{k} \quad \text { [vector equation] } \\
x=x_{0}+a t, \quad y=y_{0}+b t, \quad z=z_{0}+c t \text { [parametric equations]. }
\end{gathered}
$$

Example A. Determine the domain of $\vec{F}(t)=e^{t} \vec{i}+\ln (t+2) \vec{j}+\sqrt{5-t} \vec{k}$.

Technically, to graph a vector-valued function $\vec{F}(t)=f_{1}(t) \vec{i}+f_{2}(t) \vec{j}+f_{3}(t) \vec{k}$ we'd need a 4-D grid to plot points (t, x, y, z). What we can do in 3-D space is to sketch only the range of \vec{F}, in the form of coordinate points (x, y, z) whose values are determined by the component functions. Additionally, we'll need to think "movement in terms of t ": As t increases, the component functions will trace out vectors, so that the resulting curve C has an arrow indicating direction of movement. [Analogy in 2-D: polar graphs]

Example B. Sketch the curve C traced out by $\vec{G}(t)=-2 t \vec{i}+(1-t) \vec{j}$.

The only remaining question is, "What direction?"

Example C [11.5 Example B]. Sketch the curve C traced out by $\vec{H}(t)=(3+4 t) \vec{i}+(2+2 t) \vec{j}+(1-6 t) \vec{k}$.

Example D. Sketch the curve C traced out by $\vec{F}(t)=2 \cos t \vec{j}-2 \sin t \vec{k}$.

Your text defines the standard unit circle as the curve traced out by the vector-valued function

$$
\vec{F}(t)=\cos t \vec{i}+\sin t \vec{j}
$$

Definition 12.2: Vector-valued functions have the following (not entirely unexpected) properties.

$$
\begin{gathered}
(\vec{F}+\vec{G})(t)=\vec{F}(t)+\vec{G}(t) \quad(\vec{F}-\vec{G})(t)=\vec{F}(t)-\vec{G}(t) \\
(f * \vec{F})(t)=f(t) * \vec{F}(t) \\
(\vec{F} \bullet \vec{G})(t)=\vec{F}(t) \bullet \vec{G}(t) \quad(\vec{F} \times \vec{G})(t)=\vec{F}(t) \times \vec{G}(t) \\
(\vec{F} \circ g)(t)=\vec{F}(g(t))
\end{gathered}
$$

Example D extended. Sketch the curve C traced out by $\vec{G}(t)=t \vec{i}+2 \cos t \vec{j}-2 \sin t \vec{k}$.

Example E. Sketch the curve C traced out by $\vec{F}(t)=\cos t \vec{i}+2 \cos t \vec{j}+\sqrt{5} \sin t \vec{k}$.

Note: Text questions 32 and 33 ask you to find intersections.
32. cylinder $x^{2}+y^{2}=4$ and curve traced out by $\vec{F}(t)=t \cos (\pi t) \vec{i}+t \sin (\pi t) \vec{j}+t \vec{k}$
33. sphere $x^{2}+y^{2}+z^{2}=10$ and curve traced out by $\vec{F}(t)=\cos (\pi t) \vec{i}+\sin (\pi t) \vec{j}+t \vec{k}$ Suggestions?

