
Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals 
notes by Tim Pilachowski 
 

What we have so far: vector-valued functions, ( ) ( ) ( ) ( )ktfjtfitftF
rrrr

321 ++= , with a domain of real 

numbers and a range of vectors. 

The functions 21, ff  and 3f  are the component functions of F
r

, i.e. ( ) ( ) ( )tfztfytfx 321 ,, === . 
 

As was done with regular functions ( )xfy =  in Calculus I, we take a (short) side trip into a discussion of limits 

and continuity. 
 

Definition 12.3. “Let F [= F
r

] be a vector-valued function be defined at each point in some open interval 

containing 0t , except possibly 0t  itself. A vector L [= L
r

] is the limit of F(t) as t approaches 0t  (or L is the 

limit of F at 0t ) if for every ε > 0 there is a number δ > 0 such that 

if δ<−< 00 tt , then ( ) ε<− LtF
rr

.” 

In this case we write ( ) LtF
tt

rr
=

→ 0

lim  and say that ( )tF
tt

r

0

lim
→

 exists. 

 

In 3-D space, we can visualize an open ball [see Lecture 12.1] or tunnel with center L
r

 and radius ε. Then 

( ) LtF
tt

rr
=

→ 0

lim  if there is an open interval about 0t  such that F
r

 assigns to each number in the interval  (except 

possibly 0t ) a point in the ball/tunnel. 
 

Most useful to our purposes will be Theorem 12.4. 

Let ( ) ( ) ( ) ( )ktfjtfitftF
rrrr

321 ++= . Then F
r

 has a limit at 0t  if and only if 21, ff  and 3f  have limits at 0t . 

That is, ( ) ( ) ( ) ( ) ktfjtfitftF
tttttttt

rrrr









+








+








=

→→→→
321

0000

limlimlimlim . 

The proof is in the text, so I won’t duplicate it here. 
 

Example A. Find ( )( )ktjtie
t

t

rrr
−+++

−→
52lnlim

2
 and ( )( )ktjtie

t

t

rrr
−+++

→
52lnlim

5
. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Side note: To follow an example in the text and for one of the practice exercises, you’ll need to remember that 

1
sin

lim
0

=
→ t

t

t
. 

 

Only a couple more theoretical things are needed to finish up section 12.2. 
 



First of all, properties. 

Theorem 12.5. Let ( )tF
r

 and ( )tG
r

 be vector-valued functions, and ( )tf  and ( )tg  be real-valued functions, for 

which all limits exist and particularly ( ) 0
0

lim tsg
ss

=
→

. 

( )( ) ( ) ( )tGtFtGF
tttttt

rrrr

000

limlimlim
→→→

+=+  ( )( ) ( ) ( )tGtFtGF
tttttt

rrrr

000

limlimlim
→→→

−=−  

( )( ) ( ) ( )tFtftFf
tttttt

rr

000

limlimlim
→→→

∗=∗  

( )( ) ( ) ( )tGtFtGF
tttttt

rrrr

000

limlimlim
→→→

•=•  ( )( ) ( ) ( )tGtFtGF
tttttt

rrrr

000

limlimlim
→→→

×=×  

( )( ) ( )tFsgF
ttss

r
o

r

00

limlim
→→

=  if ( ) 0tsg ≠  for all s in an open interval about 0s  

Proofs are in the text, so I won’t duplicate them here. 
 

Second, continuity. 

Definition 12.6. “A vector-valued function F
r

 is continuous at a point 0t  in its domain if ( ) ( )0
0

lim tFtF
tt

rr
=

→
. 

Theorem 12.7. “A vector-valued function F
r

 is continuous at 0t  if and only if each of its component functions 

is continuous at 0t . 

 

Here begins section 12.3. 

Definition 12.8. “Let 0t  be a number in the domain of a vector-valued function F [= F
r

]. If 
( ) ( )

0

0

0

lim
tt

tFtF

tt −

−

→

rr

 

exists, we call this limit the derivative of F at 0t  and write ( )
( ) ( )

0

0
0

0

lim
tt

tFtF
tF

tt −

−
=′

→

rr
r

.” 

We’ll also use the Leibnitz notation, ( )
dt

Fd
tF

r
r

=′ . 

Informally stated, just as the derivative of ( )xfy =  was derived as the limit of slopes of secant lines providing 

the slope of the tangent to the curve, the derivative ( )tF ′
r

 provides us with a vector which is tangent to the curve 

C which is traced out by a vector-valued function ( )tF
r

. 
 

Theorem 12.9. “Let ( ) ( ) ( ) ( )ktfjtfitftF
rrrr

321 ++= . Then F
r

 is differentiable at 0t  if and only if 21, ff  and 

3f  are differentiable at 0t . In that case, ( ) ( ) ( ) ( )ktfjtfitftF
rrrr

321 ′+′+′=′ .” 
 

Example B. Let ( ) ( ) ( ) ( )ktjtittH
rrrr

612243 −++++= . Find ( )tH ′
r

. 

 

 

 

 

 

 

 

 

 

 

As illustrated in Example B, the derivative of a linear vector-valued function Ltr
r

+0  is a constant vector-

valued function parallel to L
r

. 
 



Example C. Let ( ) kttjtittG
rrrr

sin2cos22 −+= . Find 







′

2

π
G
r

. 

 

 

 

 

 

 

 

 

 

 

Note that the product rule was needed for the z-component. 
 

Almost all of the differentiation rules from Calculus I have counterparts for vector-valued functions. 

Theorem 12.10. “Let F
r

, G
r

, and f be differentiable at 0t , and let g be differentiable at 0s  with ( ) 00 tsg = . 

( )( ) ( ) ( )tGtFtGF ′+′=′+′
rrrr

 ( )( ) ( ) ( )tGtFtGF ′−′=′−′
rrrr

 

( ) ( ) ( ) ( ) ( ) ( )tFtftFtftFf
rrr

∗′+′∗=
′

∗  

( ) ( ) ( ) ( ) ( ) ( )tGtFtGtFtGF ′•+•′=
′

•
rrrrrr

 ( ) ( ) ( ) ( ) ( ) ( )tGtFtGtFtGF ′×+×′=
′

×
rrrrrr

 

( ) ( ) ( )[ ] ( ) ( ) ( )00000 sgtFsgsgFsgF ′∗′=′∗′=
′ rr

o
r

 

When there is a choice of methods, I recommend choosing the simpler one. 

Example D. Let ( ) kjtittF
rrrr

5ln ++=  and ( ) jtittG
rrr

cos2+= . Find ( ) ( )tGF
′

×
rr

. 

If we use the rule above, the right-hand side would mean doing two cross products. 

In this case, it may be easier to do one cross product on the left, then differentiate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Possibly the most useful of the properties above will be the last one, the “chain rule”. 
 



Corollary 12.11. “Let F
r

 be differentiable on an interval I, and assume there is a number c such that ( ) ctF =
r

 

for t in I. Then ( ) ( ) 0=′• tFtF
rr

 for t in I. 
 

The text has a three-line proof. 

More important for our purposes are the implications of Corollary 12.11. 

If ( )tF
r

 is constant, then for each t in the domain of F
r

 one of the following is true. 

( ) 0
rr

=tF  

( ) 0
rr

=′ tF  (e.g., if ( ) kcjbiatF
rrrr

++= ) 

( )tF
r

 and ( )tF ′
r

 are perpendicular (e.g. if ( )tF
r

 traces out a circle) 
 

Lecture 12.1 Example E revisited. Given ( ) ktjtittF
rrrr

sin5cos2cos ++= , first find ( )tF ′
r

, then show that 

( )tF
r

 and ( )tF ′
r

 are perpendicular for all values of t in the domain. 

(Do this one on your own, for practice.) 

 

 

 

 

 

 

 

 

 

 

 
 

The second derivative of a vector-valued function is defined as the derivative of the first derivative of a vector 

valued function. 

( )

( )

( ) kfjfiftF

kfjfiftF

kfjfiftF

rrrr

rrrr

rrrr

321

321

321

′′+′′+′′=′′

′+′+′=′

++=

 

 

Example C revisited. Let ( ) kttjtittG
rrrr

sin2cos22 −+= . Find ( )tG ′′
r

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



When we apply vector-valued functions to applications involving motion with respect to time, we get results 

similar to those found in Calculus I. 

Position: ( ) ( ) ( ) ( )ktzjtyitxtr
rrrr

++=   (radial or radius vector) 

( ) ( )0trtr
rr

−   (displacement vector, from initial position to current one) 

Velocity: ( ) k
dt

dz
j

dt

dy
i

dt

dx

dt

rd
tv

rrr
r

r
++==  

Speed: ( )
222









+








+








=

dt

dz

dt

dy

dt

dx
tv

r
 

Acceleration: ( ) k
dt

zd
j

dt

yd
i

dt

xd

dt

rd

dt

vd
ta

rrr
rr

r

2

2

2

2

2

2

2

2

++===  

 

Example E. Find the position, velocity and speed of an object having acceleration ( ) kta
rr

32−= , initial velocity 

kjiv
rrrr

++= 220 , and initial position kir
rrr

330 += . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

For the example above, we made use of Theorem 12.12. Let ( ) ( ) ( ) ( )ktfjtfitftF
rrrr

321 ++=  where 21, ff  and 

3f  are continuous on [a, b]. 

( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) kdttfjdttfidttfdttF

kdttfjdttfidttfdttF

b

a

b

a

b

a

b

a

rrrr

rrrr







+






+






=

++=

∫∫∫∫

∫∫∫∫

321

321

 

 

For assistance with this same idea applied to applications involving objects subject only to the gravity of earth 

(text exercises 47-49), see the text Example 10 and Example 11. 


