Calculus 241, section 12.4 Space Curves & Lengths

notes by Tim Pilachowski

In section 12.1, we discussed sketching the range of a vector-valued function, F , in the form of coordinate
points (x, y, z) whose values are determined by the endpoints of the component functions. The underlying
concept was “movement in terms of ¢”’: as ¢ increases, the component functions will trace out vectors, so that
the resulting curve C has an arrow indicating direction of movement. Beginning in this section we’ll be a little
more formal and restricted when talking about curves.

Definition 12.13. “A space curve (or simply curve) is the range of a continuous vector-valued function on an
interval of real numbers.”

Given a vector-valued function r = 7 ()= x(¢)i + y(r) j + 2 (t)lg , we’ll say that a curve C is parametrized by
r,or that 7 is a parametrization of C. As a shortcut, the text (and we) will at times refer to “the curve 7 .

This definition of a curve in space includes all of the graphs of continuous real-valued functions encountered in
Algebra and Calculus I and II. A continuous function y = f(x) can be parametrized by

x=t,y=f(r), thatis 7(t)=¢i + f(¢)].

Definition 12.14. “A curve C is closed if it has a parametrization whose domain is a closed interval [a, b] such
that 7 (a)= 7 (b), but otherwise 7 (¢,) # 7 (t,) for t; # t,, with at most finitely many exceptions.”

Example A. Show that the curve C parametrized by 7 ()= 2cost j — 2sint k is closed.

Examples B: Determine whether or not the following curves are closed.
a) x=2cost(l1—cost), y =2sinz(1—cost) on the interval [0, 2.




b) x =4cos(2t)cos(t), y = 4cos(2¢)sin(r) on the interval [0, 2.
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¢) x=1>=312, y= 3 =3t on any closed interval

The examples above are in the 2-D plane, but the concepts extend to curves in 3-D space.
The circular helix G (t)=1ti +2cost j —2sint k is not closed on any interval in its domain.
The x-component will be different for every value of ¢ in the domain.

Definition 12.15a. “A vector-valued function 7 defined on an interval / is smooth if 7 has a continuous
derivative on I and 7’ (r) # 0 for each interior point 7. A curve C is smooth if it has a smooth parametrization.”

Definition 12.15b. “A continuous vector-valued function 7 defined on an interval / is piecewise smooth if / is
composed of a finite number of subintervals on each of which 7 is smooth. A curve C is piecewise smooth if it
has a piecewise smooth parametrization.”

Example A revisited. The curve C parametrized by 7 (f) = 2cost j —2sint k is smooth.
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Examples B revisited: a) 7 (r)=2cosz(1—cost)i +2sint(I—cost) ] is not smooth across its entire domain.

b) x =4cos(2t)cos(t), y =4cos(2¢)sin(r) is smooth c) x= 3 =32, y= 13 =3¢ is smooth
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The circular helix G (t)=1ti +2cost j —2sint k is smooth.

In Example 5 (and the explanation which precedes it), the text shows that lines and line segments in 3-D space
are both continuous and smooth.

Last topic that you’ll need for section 12.4: Length of a curve in 3-D space.

Do you remember the formula for length of a curve derived in section 6.2?

L= j 1+( jdx j 1+ [F/(x)] dx

Do you remember the formula for length of a parametrized curve derived in section 6.8?
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In a fashion similar to that followed in those sections, the text develops a formula for the length of a curve in 3-
D space.

Definition 12.16. Let C be a curve with a piecewise smooth parametrization 7 (¢)= x(¢)i + y(¢) j + z(t)k
defined on [a, b]. Then the length L of C is given by
dr

7 (t)||dt=J'ab‘—
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Example A once again. Find the length L on the interval [0, 27] of the curve C parametrized by
7(t)=2cost j — 2sintk .
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Note that we get the circumference of a circle with radius 2.
Important note: We had to be careful, and avoid a parametrization and interval that traced out the curve C
more than once.

Examples B once again: a) The length of 7 (f)=2cos#(1—cos?)i +2sinz(I—cost)j on the interval [0, 2]
would require integration by substitution.

b) The length of 7 (¢) = 4cos(2¢)cos(r)i +4cos(2¢)sin(z) j on the interval [0, 2] would require use of the
double-angle identities, along with trigonometric methods from section 8.2.
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c¢) Find the length L on the interval [ 1.3, 2.3] of the curve C parametrized by x = 3 =312, y= 3 =3t




Find the length L on the interval [0, 67] of the circular helix G (t)=1ti +2cost j —2sint k.

Two final notes:

The length of a line segment in 3-D space derives to the same formula as the length of the vector connecting the
two points.

Every curve has many parametrizations. Since we would get the same length for any piecewise smooth curve by
using any of its parametrizations, we can say that the length of a curve is independent of parametrization.



