Calculus 241, section 12.5-12.6 Tangent \& Normal to Curves \& Curvature

 notes by Tim PilachowskiDefinition 12.17. "Let C be a smooth curve and $\mathbf{r}[=\vec{r}]$ a smooth parametrization of C defined on an interval I. Then for any interior point t of I, the tangent vector $\mathbf{T}(t)[=\vec{T}(t)]$ at the point $\vec{r}(t)$ is defined by

$$
\vec{T}(t)=\frac{\vec{r}^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}=\frac{d \vec{r} / d t}{\|d \vec{r} / d t\|}
$$

Note that $\vec{T}(t)$ is a unit vector in the same direction as $\vec{r}^{\prime}(t)$.
Example A. Given the curve C parametrized by $\vec{r}(t)=2 \cos t \vec{j}-2 \sin t \vec{k}$, find a formula for the tangent vector $\vec{T}(t)$ and then evaluate $\vec{T}\left(\frac{5 \pi}{4}\right)$.
We graphed this curve in Lecture 12.1 Example D, and saw a circle in the $y z$ plane centered at $(0,0,0)$ with a radius of 2 and a clockwise movement.

Given the shape traced out by $\vec{r}(t)$ in this case, it's not really surprising that $\vec{T}(t) \bullet \vec{r}(t)=0$ for all values of t, i.e. that the position vector and the tangent vector are perpendicular for all t.

Example B. Given the circular helix parametrized by $\vec{r}(t)=t \vec{i}+2 \cos t \vec{j}-2 \sin t \vec{k}$, find a formula for the tangent vector $\vec{T}(t)$.

Definition 12.18. "Let C be a smooth curve and $\mathbf{r}[=\vec{r}]$ a smooth parametrization of C defined on an interval I such that \vec{r}^{\prime} is smooth. Then for any interior point t of I for which $\vec{T}^{\prime}(t) \neq \overrightarrow{0}$, the normal vector $\mathbf{N}(t)[=\vec{N}(t)]$ at the point $\vec{r}(t)$ is defined by

$$
\vec{N}(t)=\frac{\vec{T}^{\prime}(t)}{\left\|\vec{T}^{\prime}(t)\right\|}=\frac{d \vec{T} / d t}{\|d \vec{T} / d t\|}, \cdots
$$

Note that $\vec{N}(t)$ is a unit vector in the same direction as $T^{\prime}(t)$.

Example A revisited. Given the curve C parametrized by $\vec{r}(t)=2 \cos t \vec{j}-2 \sin t \vec{k}$, find a formula for the normal vector $\vec{N}(t)$ and then evaluate $\vec{N}\left(\frac{5 \pi}{4}\right)$.

Note that the normal to a circle points toward the center of the circle, opposite the direction of the position vector $\vec{r}(t)$, and is perpendicular to the tangent vector $\vec{T}(t)$ for all values of t.

Example B revisited. Given the circular helix parametrized by $\vec{r}(t)=t \vec{i}+2 \cos t \vec{j}-2 \sin t \vec{k}$, find a formula for the normal vector $\vec{N}(t)$.

The normal vectors to this circular helix are always perpendicular to, and pointed toward, the x-axis.

Here begins section 12.6.

We begin with a curve C. While the length of the tangent vector is always 1 , the change in direction from one tangent vector to the next can vary from "not at all" if C is a line, to "a whole lot" if C has, for example, a corkscrew shape. In other words, the rate of change of the tangent vector with respect to the arc length function s is related to the rate at which C bends in space. The text uses the Chain Rule to derive a formula for the curvature κ of the curve C.

Definition 12.19. "Let C have a smooth parametrization $\mathbf{r}[=\vec{r}]$ such that \vec{r}^{\prime} is differentiable. Then the curvature κ of C is defined by the formula

$$
\kappa(t)=\frac{\left\|\vec{T}^{\prime}(t)\right\|}{\left\|\vec{r}^{\prime}(t)\right\|}=\frac{\|d \vec{T} / d t\|}{\|d \vec{r} / d t\|}
$$

Note that, by definition, $\kappa(t)$ must always be 0 or a positive number.

Example A once again. Given the curve C parametrized by $\vec{r}(t)=2 \cos t \vec{j}-2 \sin t \vec{k}$, find a formula for the curvature $\kappa(t)$. answer: $1 / 2$

The text, in Example 1, demonstrates that the curvature of a circle of radius r is $\frac{1}{r}$.
Example B once again. Given the circular helix parametrized by $\vec{r}(t)=t \vec{i}+2 \cos t \vec{j}-2 \sin t \vec{k}$, find a formula for the curvature $\kappa(t)$.

I'll leave it to you to show that the curvature of this circular helix is constant. answer: $\frac{2}{\sqrt{5}}$
The text develops an alternative formula that, in some cases, will make the computations for curvature easier.
Given that $\vec{v}(t)=\vec{r}^{\prime}(t)$, and $\vec{a}(t)=\vec{v}^{\prime}(t)=\vec{r}^{\prime \prime}(t)$, then $\kappa(t)=\frac{\|\vec{v} \times \vec{a}\|}{\|\vec{v}\|^{3}}$.
Example C [text practice exercise 4]. Given the curve parametrized by $\vec{r}(t)=\frac{1}{3}(1+t)^{3 / 2} \vec{i}+\frac{1}{3}(1-t)^{3 / 2} \vec{j}+\frac{\sqrt{2}}{2} t \vec{k}$, find a formula for the curvature $\kappa(t)$.

You should get
$\vec{v}(t)=\vec{r}^{\prime}(t)=\frac{1}{2}(1+t)^{1 / 2} \vec{i}-\frac{1}{2}(1-t)^{1 / 2} \vec{j}+\frac{\sqrt{2}}{2} \vec{k}$
$a(t)=\vec{r}^{\prime \prime}(t)=\frac{1}{4}(1+t)^{-1 / 2} \vec{i}+\frac{1}{4}(1-t)^{-1 / 2} \vec{j}$
$\vec{v} \times \vec{a}=-\frac{\sqrt{2}}{8 \sqrt{1-t}} \vec{i}+\frac{\sqrt{2}}{8 \sqrt{1+t}} \vec{j}+\frac{1}{4 \sqrt{1-t^{2}}} \vec{k}$
$\kappa(t)=\frac{1}{4} \sqrt{\frac{2}{1-t^{2}}}$

