Calculus 241, section 13.5 Directional Derivatives

notes by Tim Pilachowski
In section 13.3, we looked at partial derivatives.

$$
\frac{\partial f(x, y)}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

With y treated as a constant, the tangent line goes in the direction of the x-axis. The text gives a more formal explanation, connecting $\frac{\partial f}{\partial x}=f_{x}$ to a tangent vector $\vec{i}+f_{x}\left(x_{0}, y_{0}\right) \vec{k}$.
Similar observations would apply to $\frac{\partial f}{\partial y}=f_{y}$.
But what if we wanted a tangent (derivative) in a direction other than one of the axes, for example in the direction of a unit vector $\mathbf{u}=\vec{u}=a_{1} \vec{i}+a_{2} \vec{j}$?
Definition 13.12. "Let f be a function on a set containing a disk D centered at $\left(x_{0}, y_{0}\right)$, and let $\mathbf{u}=\vec{u}=a_{1} \vec{i}+a_{2} \vec{j}$ be a unit vector. Then the directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of $\vec{u} \ldots$ is defined by

$$
D_{\vec{u}} f\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a_{1}, y_{0}+h a_{2}\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

provided that this limit exists."
Note that if $\vec{u}=\vec{i}=1 \vec{i}+0 \vec{j}$, we get $D_{\vec{u}} f\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h}=f_{x}\left(x_{0}, y_{0}\right)$,

$$
\text { and if } \vec{u}=\vec{j}=0 \vec{i}+1 \vec{j} \text { we get } D_{\vec{u}} f\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}, y_{0}+h\right)-f\left(x_{0}, y_{0}\right)}{h}=f_{y}\left(x_{0}, y_{0}\right) \text {. }
$$

It turns out that finding a directional derivative is relatively simple, involving the partial derivatives and the components of the directional vector.

Theorem 13.13. "Let f be differentiable at $\left(x_{0}, y_{0}\right)$. Then f has a directional derivative at $\left(x_{0}, y_{0}\right)$ in every direction. Moreover, if $\vec{u}=a_{1} \vec{i}+a_{2} \vec{j}$ is a unit vector, then

$$
D_{\vec{u}} f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right) a_{1}+f_{y}\left(x_{0}, y_{0}\right) a_{2} . "
$$

The text has a four-line proof.
Example A. Given $f(x, y)=9-x^{2}-y^{2}$ and $\vec{u}=\frac{\sqrt{3}}{2} \vec{i}+\frac{1}{2} \vec{j}$, find $D_{\vec{u}} f(1,2)$. answer: $-\sqrt{3}-2$

Note that the directional derivative is a formula that gives us a number value for slope at a particular point in a particular direction.

We can extend Theorem 13.13 to functions of three variables. If f is differentiable at $\left(x_{0}, y_{0}, z_{0}\right)$, and $\vec{u}=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}$ is a unit vector, then

$$
D_{\vec{u}} f\left(x_{0}, y_{0}, z_{0}\right)=f_{x}\left(x_{0}, y_{0}, z_{0}\right) a_{1}+f_{y}\left(x_{0}, y_{0}, z_{0}\right) a_{2}+f_{z}\left(x_{0}, y_{0}, z_{0}\right) a_{3}
$$

Example B. Given $f(x, y, z)=\frac{x}{y} \ln (z)$ and $\vec{a}=\vec{i}-\sqrt{5} \vec{j}+\sqrt{3} \vec{k}$, find $D_{\vec{u}} f(2,1,3)$ in the direction of \vec{a}. answer: $\frac{1}{3} \ln (3)+\frac{2 \sqrt{5}}{3} \ln (3)+\frac{2 \sqrt{3}}{9}$

