
Calculus 241, section 13.9 Lagrange Multipliers 
notes by Tim Pilachowski 
 

 

In a finite mathematics course (Math 110 here at UMCP) students encounter linear programming. A typical 
word problem looks like this: 

A company manufactures two types of desks. Let x = the number of steel desks and let y = the number 
of wood desks. The profit for steel desks is $80 each, and the profit for wood desks is $175. The 
company wants to maximize its profit. Each steel desk requires 2 hours of assembly and 1 hour of 
finishing. Wood desks require 4 hours of assembly and 3 hours of finishing. The company has 100 
work-hours available for assembly and 60 work-hours available for finishing. 

 

The company’s goal (i.e. objective) is to maximize profit: the objective function 
is P = 80x + 175y. In theory, this function has no maximum: make more desks = 
make more money. In the real world, however, there are limitations (i.e. 
constraints): the number of employees and therefore the number of desks that 
can be made has an upper limit. The hours available for assembly is expressed in 
the assembly constraint 2x + 4y ≤ 100. The hours available for finishing is 
expressed in the finishing constraint x + 3y ≤ 60. In addition, the number of each 
type of desk made cannot be negative: x ≥ 0 and y ≥ 0. The “system of 
constraints” which illustrates the “feasible set” is graphed to the right, with 
corners labeled. 
 

If we were to graph the level curves for the profit function P = 80x + 175y, they would appear as a series of 
parallel lines: all with the same slope but representing varying levels of profit. The maximum possible (i.e. 
feasible) profit is represented by the level curve where P = 4150 that passes through the corner (30, 10). 
 

You won’t be asked to do a linear programming question in this class, but you will need some of the same 
algebra skills, such as solving a system of equations. 
 

Rather, in calculus, while we’re still looking for some optimum value (maximum or minimum), neither the 
objective nor the constraints are likely to be linear functions, and we’ll need somewhat more involved methods 
of finding the maximum or minimum of the objective, within the given constraints. 
 

Specifically, if we are looking for an intersection, at a point, ( )00 , yx , of an extreme of a function ( )yxf ,  with 

a level curve ( ) cyxg =, , then from Theorem 13.17 we have that the normals to the two curves are parallel. 

That is ( )00 ,grad yxf  is a multiple of ( )00 ,grad yxg . (For a more formal and more technically complete 

explanation, see your text at the beginning of section 13.9 and the proof of Theorem 13.23.) 
 

Theorem 13.23. “Let f and g be differentiable at ( )00 , yx . Let C be the level curve ( ) cyxg =,  that contains 

( )00 , yx . Assume C is smooth and that ( )00 , yx  is not an endpoint of the curve. If ( ) 0,grad
r

≠yxg  and if f has 

an extreme value on C at ( )00 , yx , then there is a number λ such that 

( ) ( )yxgyxf ,grad,grad λ= .” 
 

1) The number λ is called a Lagrange multiplier. 

2) The process we’ll develop below will work for functions of three variables as well as for functions of two 
variables, although the algebra will usually become more complicated. 

 

Given an objective function f and a constraint function g the process looks like this: 
Identify the objective function f — it’s the one that needs to be maximized or minimized — and the 
constraint. 

Assume that f has an extreme value on the level curve ( ) cyxg =, . 

Set up ( ) ( )yxgyxf ,grad,grad λ=  and solve the resulting system of equations for one variable in terms of 

the other(s). 

( )10,30  

( )0,0  

( )20,0  

( )0,50  



(It will often be best to first solve for λ and set these formulas equal to each other, using a series of 
substitutions to find the rest of the values.) 

Substitute into the constraint ( ) cyxg =, . 

If the constraint involves a region R, look for critical values in the interior of the region. 

Calculate the value of f at each point ( )yx,  that arises from the above to identify the maximum and 

minimum. 
 

Example A: Find the maximum and minimum values of ( ) 32, 22 ++= yxyxf  such that 9=+ yx . 

answer: minimum ( ) 576,3 =f , no maximum 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conceptual explanation: The graph of ( ) 32, 22 ++= yxyxf  is a 3-D surface, for which there are an infinite 

number of z-values. (It’s a parabolic-elliptical shape with a minimum at (0, 0, 3)). 
The graph of 9=+ yx  is a plane parallel to the z-axis, for which there are an infinite number of z-values. 

The intersection of these two contains an infinite number of points. (It’s a parabola parallel to the z-axis.) 
The smallest z-value for any of these intersections is found at the point (3, 6, 57). 
Like any parabola opening up, there is no maximum. 
 



Example B: Find the extreme values of ( ) 23 3, yxyxf +=  on the disk 922 ≤+ yx . 

answer: minimum ( ) 273,0 −=−f , maximum ( ) ( ) 180,30,3 ==− ff  
 

By Theorem 13.22 (Maximum-Minimum Theorem) we know that f will have both a minimum and a maximum 
on the disk, either on a boundary or in the interior. 
 

[Recall Example D revisited from section 13.8: Find the extreme values of ( ) 1693, 23 +−−+= yxyxyxf  on 

the region R defined by 0 ≤ x ≤ 1, 0 ≤ y ≤ 3. We’ll follow much the same process here, checking both interior 
(with the first derivative test) and boundary points (with a Lagrange multiplier).] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conceptual explanation: The graph of ( ) 23 3, yxyxf +=  is a 3-D surface, for which there are an infinite 

number of z-values. (It has an orchid-flower shape with neither relative minimum nor maximum.) 

The graph of 922 ≤+ yx  is a solid cylinder parallel to the z-axis, for which there are an infinite number of 

z-values. 
The intersection of these two contains an infinite number of points. 
The smallest z-value for any of these intersections is found at the point (0, – 3, – 27). 
The largest z-value for any of these intersections is found at the points (– 3, 0, 18) and (3, 0, 18).   
 



Example C: We want to make a rectangular open box with one partition in the middle, as illustrated in the 

picture, from 162 2in  of cardboard. Find the dimensions that would 
maximize the volume. (Okay, this isn’t much like a real-world problem. If 
you’d rather, you can change it to “cargo container and sheet metal”.) 

 

Answer: 9 in by 6 in by 3 in 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In this Example, the Lagrange multiplier has a physical interpretation: λ = marginal volume with respect to 

surface area = 
9 3 27 3
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given constraint, would decrease the volume. 
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