Dr. Justin O. Wyss-Gallifent

Math 241 Chapter 13

§13.1 Functions of Several Variables

- 1. Definition: A function like f(x, y), f(x, y, z), g(s, t) etc.
- 2. Definition of the graph of a function of two variables and classic examples like: Plane, paraboloid, cone, parabolic sheet, hemisphere.
- 3. Definition of level curve for f(x, y) and level surface for f(x, y, z).
- 4. Graphs of surfaces which are not necessarily functions: Sphere, ellipsoid, cylinder sideways parabolic sheet like $y = x^2$, double-cone.
- §13.2 Limits and Continuity
 - 1. Nothing much said other than $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ asks what f(x,y) approaches as (x,y) gets closer to (x_0, y_0) .
- §13.3 Partial Derivatives
 - 1. Defn: We can define the partial derivative of f(x, y) with respect to x, denoted $\frac{\partial f}{\partial x}$ or f_x , as the derivative of f treating all variables other than x as constant. Similarly for any variable for any function.
 - 2. For f(x, y) it turns out f_x and f_y give the slopes of the lines tangent to the graph of f(x, y) at the point (x, y) in the positive x and positive y directions respectively. A picture can clarify.
 - 3. Higher derivatives will also be used but there are some points to note:
 - (a) f_{xy} means $(f_x)_y$ so first take the derivative with respect to x and then y.
 - (b) $\frac{\partial^2 f}{\partial x \partial y}$ means $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$ so first take the derivative with respect to y and then x.
 - (c) $\frac{\partial^2 f}{\partial x^2}$ means x both times.
 - (d) It turns out that 99% of the time the order doesn't matter so for example $f_{xy} = f_{yx}$.

§13.4 The Chain Rule

- 1. Consider: For example if f is a function of x and y which are both functions of s and t then really f is a function of s and t and so $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$ make sense. How to find them?
- 2. The chain rule says:
 - (a) First draw the tree diagram.
 - (b) For each route from the starting to ending variable write down the product of the derivatives along that path.
 - (c) Add the paths.
- 3. The chain rule is good for related rates problems when multiple rates are given and one rate is needed.

§13.5 Directional Derivative

- 1. Intro: We saw that f_x and f_y (for example) give derivatives in specific directions (the \hat{i} and \hat{j} directions) and so what if we asked for the derivative (slope) in another direction?
- 2. Defn: If $\bar{u} = a \hat{i} + b \hat{j}$ is a unit vector then the directional derivative of f in the direction of \bar{u} is $D_{\bar{u}}f = af_x + bf_y$. If we have 3D then $+cf_z$ on the end. Sometimes we use the term "directional derivative" when the direction is not a unit vector so we must make it a unit vector first.
- 3. A good analogy is that f(x, y, z) is temperature and $D_{\bar{u}}f$ gives us temperature change (slope) in a specific direction.

§13.6 The Gradient

- 1. Defn: The gradient of f, denoted grad f or ∇f , is defined as $\nabla f = f_x \hat{i} + f_y \hat{j}$ and $+ f_z \hat{k}$ in 3D.
- 2. Properties:
 - (a) For any \bar{u} we see $D_{\bar{u}}f = \bar{u} \cdot \nabla f$.
 - (b) Since $D_{\bar{u}}f = \bar{u} \cdot \nabla f = ||\bar{u}|| ||\nabla f|| \cos \theta = ||\nabla f|| \cos \theta$ we see that the directional derivative is maximum when $\theta = 0$ which shows that the gradient points in the direction of maximum directional derivative.
 - (c) It also shows that the actual value of the maximum directional derivative is $||\nabla f||$.
 - (d) In the 2D case ∇f is perpendicular to the level curve for f(x, y) at (x, y). If we want a vector perpendicular to the graph of a function f(x) we need to rewrite as y = f(x) then f(x) y = 0 and then the graph of the function is the level curve for g(x, y) = f(x) y and we use ∇g .
 - (e) In the 3D case ∇f is perpendicular to the level surface for f(x, y, z) at (x, y, z). If we want a vector perpendicular to the graph of a function g(x, y) we need to rewrite as z = g(x, y) then g(x, y) z = 0 and then the graph of the function is the level surface for f(x, y, z) = g(x, y) z and we use ∇f .
- 3. Tangent Plane: From (e) above we see that the plane which is tangent to the level surface for f(x, y, z) at (x_0, y_0, z_0) has equation $f_x(x x_0) + f_y(y y_0) + f_z(z z_0) = 0$.
- §13.7 Tangent Plane Approximations and Differentials
 - 1. Tangent Plane Continued from 13.6: Moreover if this level surface is the graph of a function g(x, y) then this becomes $g_x(x x_0) + g_y(y y_0) 1(z g(x_0, y_0)) = 0$. If we use f instead of g we can solve for z to get $z = f(x_0, y_0) + f_x(x x_0) + f_y(y y_0)$.
 - 2. Idea: If we have the graph of a function f(x, y) and take the tangent plane at a specific point $(x_0, y_0, f(x_0, y_0))$ then the tangent plane will be close to the function if we stay near (x_0, y_0) .
 - 3. Formula: $f(x_0 + h, y_0 + k) \approx f(x_0, y_0) + f_x(x_0, y_0)h + f_y(x_0, y_0)k$
 - 4. Generalization: If we have f(x, y, z) instead then there really isn't a tangent plane but more of a tangent space. This is harder to visualize but the formula is fairly obvious: $f(x_0 + h, y_0 + k, z_0 + l) \approx f(x_0, y_0, z_0) + f_x(x_0, y_0, z_0)h + f_y(x_0, y_0, z_0)k + f_z(x_0, y_0, z_0)l$

§13.8 Extreme Values

- 1. Defn: Relative maximum/minimum/extremum for f(x, y). Method:
 - (a) First find where both f_x and f_y are zero or one is undefined. Those are the *critical points*.
 - (b) Find the discriminant $D(x,y) = f_{xx}f_{yy} (f_{xy})^2$ and then for each critical point:
 - If D(x,y) < 0 then (x,y) is a saddle point.
 - If D(x,y) > 0 and $f_{xx}(x,y) < 0$ then (x,y) is a relative maximum.
 - If D(x,y) > 0 and $f_{xx}(x,y) > 0$ then (x,y) is a relative minimum.

Good examples: $f(x,y) = x^2 + 2y^2 - 6x + 8y + 1$ and $f(x,y) = 3x^2 - 3xy^2 + y^3 + 3y^2$.

- 2. Defn: Absolute m/m/e of f(x, y) on a closed and bounded region R. Method:
 - (a) Find all CP for f(x, y) which are inside the region. Take f of those.
 - (b) Find the maximum and minimum of f on the edge of the region. Usually this involves combining f with the equation for the region (sometimes part by part) and then getting f in a form where we can see what the max and min would be.
 - (c) Pick out the largest and smallest values from the prevous two steps.

Good examples: $f(x,y) = x^2 - y^2$ with $\frac{x^2}{4} + y^2 \le 1$ and f(x,y) = 3x - y on the triangle with vertices (0,0), (0,3) and (6,0).

 $\S13.9$ Lagrange Multipliers

- 1. Idea: If (x, y) are constrained by a level curve g(x, y) = c and we want to find the maximum of f(x, y) how do we do it?
- 2. Thm: If a max/min occurs at (x, y) then $\nabla f = \lambda \nabla g$ at that point so the method is:
 - (a) We set those equal and solve those along with the constraint. In other words we solve the system: $f_x = \lambda g_x$, $f_y = \lambda g_y$ and g(x, y) = c.
 - (b) The result are potential winners. We take each (x, y) we get and plug it into f, picking out the largest and smallest.

Good Examples: f(x,y) = 2x + 3y with $x^2 + y^2 = 9$, f(x,y) = xy with $(x-1)^2 + y^2 = 1$ and $f(x,y) = x^2 + y^2$ with 2x + 6y = 10.