
Calculus 241, section 14.2 Double Integrals in Polar Coordinates 
notes by Tim Pilachowski 

 

We need a little bit of theory and definition before we get to examples. 

 

In chapter 5, we took rectangles and created a Riemann sum. In chapter 10, we took pie-shaped sectors and 

followed a similar process to find areas between curves in polar coordinates. 

 

   
 

 

In section 14.1, the theory involved using a series of parallelpipeds (essentially a three-dimensional rectangle) 

as the basis for a double integral. Now, when we consider polar coordinates, we’re using pie-shaped sectors 

extended up into the third dimension. 
 

Combining this concept with the idea that (x, y) coordinates can be expressed in terms of polar values as 

( )θθ sin,cos rr , we get Theorem 14.5. 
 

“Suppose that h1 and h2 are continuous on [α, β], where 0 ≤ β – α ≤ 2π, and that 0 ≤ h1 (θ ) ≤ h2 (θ ) 

for α ≤ θ  ≤ β. Let R be the region between the polar graphs of r = h1 (θ ) and r = h2 (θ ) for  α ≤ θ  ≤ β. 

If f  is continuous on R, then ( ) ( )
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When determining the limits of integration for a polar double integral, we have to think in the same terms as we 

did when finding “area between polar curves”. 
 

10.2 Example E adapted:  Suppose that our region R is the area that lies inside the cardioid θcos22 −=r  and 

outside the circle r = 3.  
 

For the first integration (dr), θ is held constant. In designating the r boundaries of 

integration, we must think radially. Although the circle goes “above” the cardioid, we 

need to determine “outside” versus “inside”. Thus, we must set the lower limit of 

integration to ( ) 31 == θhr  and the upper limit of integration to ( ) θθ cos222 −== hr . 
 

To find the boundaries for the second integration (dθ ), find the value of θ for the two 

points of intersection: 

3

4
 and 

3

2

2

1
cos1cos23cos22

ππ
θθθθ =⇒−=⇒=−⇒=− . 

So the limits for the second integration are 
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Example A: Given ∫∫
R

dAx , where R is the region bounded by the circle r = sin θ, first express as an iterated 

integral in polar coordinates, then evaluate.   answer: 0 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our answer makes sense given the picture: “positive” and “negative” volume. (A two-dimensional analogy 

would be 0sin
2

0
=∫

π
θθ d .) In Example A, we’re integrating ( ) xyxf =,  [horizontal] over the region r = sin θ 

[horizontally symmetric]. 

 

 

 



Example B: Find the volume V of the solid region bounded by the planes z = 0, z = 6, and the cylinder 

r = 3 sin θ.   answer: 
2

27π  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example C: Find the volume V of the solid region bounded above by the planes z = y, on the sides by the 

cylinder yyx =+ 22  and below by the xy-plane.   answer: 
8
π  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example D: Given ( )∫ ∫−
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, change to an iterated integral in polar coordinates then 

evaluate.   answer: 
5
π  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We’ve run across a very convenient fact a couple of times so far: 22
yx +  converted to polar coordinates 

simplifies very nicely: [ ] [ ] 22222 sincos rrryx =+=+ θθ . 

 



Example E: Find the volume V of the solid region bounded above by the surface 
22

yx
ez

+= , on the sides by the 

cylinder circle 122 =+ yx , and below by the xy-plane.   answer: π  (e – 1) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that we would not have been able to use symmetry if it were not for the fact that both the upper surface 

and the lower surface are symmetric with respect to both the x-axis and the y-axis. 


