Calculus 241, section 14.5 Triple Integrals in Cylindrical Coordinates

 notes by Tim PilachowskiCylindrical coordinates are, IMHO, simple and straightforward. Given a function $f(x, y, z)$, while the z-coordinate remains as it is, the x and y coordinates are converted to polar coordinates using the same formulas as in section 14.2: $x=r \cos \theta, y=r \sin \theta, x^{2}+y^{2}=r^{2}$. In addition, for some of the homework exercises, it may be useful to know that $\tan \theta=\frac{y}{x}$.
Your text gives a few very useful conversions, which (for the most part) can either be derived or which make sense conceptually.
cylinder

$$
\begin{array}{ll}
\text { cylinder } & x^{2}+y^{2}=a^{2} \Rightarrow r=a \\
\text { sphere } & x^{2}+y^{2}+z^{2}=a^{2} \Rightarrow r^{2}+z^{2}=a^{2} \\
\text { double circular cone } & x^{2}+y^{2}=a^{2} z^{2} \Rightarrow r=a z \text { or } z=r \cot \phi_{0} \\
\text { circular paraboloid } & x^{2}+y^{2}=a z \Rightarrow r^{2}=a z
\end{array}
$$

sphere
circular paraboloid

Among other things, these will help with practice exercises 1 through 8, converting and sketching graphs.
Theorem 14.10. "Let D be the solid region between the graphs of F_{1} and F_{2} on R, where R is the plane region between the polar graphs of h_{1} and h_{2} on $[\alpha, \beta]$, with $0 \leq \beta-\alpha \leq 2 \pi$ and $0 \leq h_{1}(\theta) \leq h_{2}(\theta)$ for $\alpha \leq \theta \leq \beta$. If f is continuous on D, then $\iint_{D} f(x, y, z) d V=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} \int_{F_{1}(r \cos \theta, r \sin \theta)}^{F_{2}(r \cos \theta, r \sin \theta)} f(r \cos \theta, r \sin \theta) * r d z d r d \theta$."

The process for establishing the correct boundaries of integration is much the same as in section 14.4.
a) Find an equation $z=F_{2}(r, \theta)$ that represents the upper surface and an equation $z=F_{1}(r, \theta)$ that represents the lower surface of D.
b) Draw a two-dimensional sketch of the projection of D onto the $x y$-plane and determine the appropriate boundaries for integration with respect to r and $\theta, h_{1}(\theta) \leq r \leq h_{2}(\theta), \alpha \leq \theta \leq \beta$.

Example A: Use cylindrical coordinates to evaluate $\iiint_{D} x^{2} d V$ where D is the solid region bounded by the paraboloid $z=9-x^{2}-y^{2}$, the cylinder $x^{2}+y^{2}=9$, and the plane $z=0 . \quad$ answer: $\frac{243 \pi}{4}$

Example B: Find the volume V of the solid region D bounded above by the paraboloid $z=x^{2}+y^{2}$, the cylinder $x^{2}+(y-1)^{2}=1$, and the plane $z=0$. answer: $\frac{3 \pi}{2}$

Example C: Find the volume V of the solid region D bounded above by the paraboloid $z=8-x^{2}-y^{2}$ and the plane $z=-1$. answer: $\frac{81 \pi}{2}$

Example D: Consider a solid region D bounded by the cylinder $x^{2}+y^{2}=4$, the plane $z=3$, and the $x y$-plane. If the mass density at any point is equal to the distance from the point to the axis of the cylinder, find the total mass m of the region D. answer: 16π

