Calculus 241, section 15.1 Vector Fields

notes by Tim Pilachowski
Definition 15.1: "A vector field $\mathbf{F}[=\vec{F}]$ consists of two parts: a collection D of points in space, called the domain, and a rule, which assigns to each point (x, y, z) in D one and only one vector $\mathbf{F}(x, y, z)[=\vec{F}(x, y, z)]$."

Examples A: 1) a projectile's trajectory, 2) flow of fluid through a pipe, 3) $\vec{F}(x, y)=2 x \vec{i}-y \vec{j}$.
1)

2)
3)

Also take a look at the text drawings of vector fields for other visuals and for examples of how to do textbook practice homework \#1 and \#2.
We'll be most interested in two "derivatives" of a vector field: divergence and curl. The names originate in the study of fluid flow.
Divergence refers to the way in which fluid flows toward or away from a point. Curl refers to the rotational properties of the fluid at a point.
Example A-2 above considered only the speed (magnitude), and not the velocity (magnitude and direction). If you've ever dropped a stick or leaf into a stream, you've seen the whorls and eddies in the motion of the object as it moves with the current.

The divergence of a vector field is a formula/number (similar to directional derivative of a multivariable function). The curl of a vector field is a vector field (similar to gradient of a multivariable function).
In the formulas of this section, think of ∇ ("del") as an operator: $\nabla=\frac{\partial}{\partial x} \vec{i}+\frac{\partial}{\partial y} \vec{j}+\frac{\partial}{\partial z} \vec{k}$.
When applied to a function of three variables, $\nabla f(x, y, z)=\frac{\partial f}{\partial x} \vec{i}+\frac{\partial f}{\partial y} \vec{j}+\frac{\partial f}{\partial z} \vec{k}=\operatorname{grad} f(x, y, z)$.
Definition 15.2: Let $\mathbf{F}=\vec{F}=M \vec{i}+N \vec{j}+P \vec{k}$. If M_{x}, N_{x}, and P_{x}, exist, then

$$
\begin{aligned}
\operatorname{div} \vec{F} & =\nabla \bullet \vec{F}(x, y, z) \\
& =\nabla \bullet[M(x, y, z) \vec{i}+N(x, y, z) \vec{j}+P(x, y, z) \vec{k}] \\
& =\frac{\partial}{\partial x}[M(x, y, z)]+\frac{\partial}{\partial y}[N(x, y, z)]+\frac{\partial}{\partial z}[P(x, y, z)] \\
& =\frac{\partial M}{\partial x}(x, y, z)+\frac{\partial N}{\partial y}(x, y, z)+\frac{\partial P}{\partial z}(x, y, z)
\end{aligned}
$$

Example B: Find the divergence of the vector field $\vec{F}(x, y)=\left(x^{2}-y\right) \vec{i}+\left(x y-y^{2}\right) \vec{j}$.

Definitions and observations:
If $\operatorname{div} \vec{F}(x, y)=0$, then the vector field is divergence free or solenoidal.
In physical terms, divergence refers to the way in which fluid flows toward or away from a point. If $\operatorname{div} \vec{v}(x, y)>0$, then the vector field is a source. (That is, flow is away from the point.) If $\operatorname{div} \vec{v}(x, y)<0$, then the vector field is a sink. (That is, flow is toward the point.) If $\operatorname{div} \vec{v}(x, y)=0$, then the vector field has neither sources nor sinks (The technical term is incompressible).

Definition 15.3: Let $\mathbf{F}=\vec{F}=M \vec{i}+N \vec{j}+P \vec{k}$. If M_{x}, N_{x}, and P_{x}, exist, then

$$
\begin{aligned}
\operatorname{curl} \vec{F} & =\nabla \times \vec{F}(x, y, z) \\
& =\nabla \times[M(x, y, z) \vec{i}+N(x, y, z) \vec{j}+P(x, y, z) \vec{k}] \\
& =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
M & N & P
\end{array}\right| \\
& =\left(\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}\right) \vec{i}+\left(\frac{\partial M}{\partial z}-\frac{\partial P}{\partial x}\right) \vec{j}+\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \vec{k} .
\end{aligned}
$$

Example C: Find the curl of the vector field $\vec{F}(x, y, z)=\left(x^{2}-y\right) \vec{i}+4 z \vec{j}+x^{2} \vec{k}$.

In physical terms, curl refers to the rotational properties of a fluid at a point. If curl $\vec{F}(x, y)=\overrightarrow{0}$, then the vector field is irrotational.

The text notes two useful relations among gradient, divergence and curl: div $(\operatorname{curl} \vec{F})=0, \operatorname{curl}(\operatorname{grad} f)=\overrightarrow{0}$. The proofs need correct differentiation, and depend on the equality of the mixed partials that occur.

Example D: Find the divergence and the curl of the vector field $\vec{F}(x, y, z)=x^{2} y \vec{i}+2 y^{3} z \vec{j}+3 z \vec{k}$.

Once again, note that the divergence of a vector field is a formula/number (similar to directional derivative of a multivariable function), and the curl of a vector field is a vector field (similar to gradient of a multivariable function).

Now think back to chapter 5. A function of one variable can be "recovered" from its derivative via integration.
The text does examples of recovering a function of several variables from its gradient by successive integrations. We're going to combine that process with another concept.
Theorem15.4 "Let $\vec{F}=M \vec{i}+N \vec{j}+P \vec{k}$ be a vector field. If there is a function f having continuous mixed partials whose gradient is \vec{F}, then $\operatorname{curl} \vec{F}=\nabla \times \vec{F}(x, y, z)=\overrightarrow{0}$, that is,

$$
\frac{\partial P}{\partial y}=\frac{\partial N}{\partial z}, \quad \frac{\partial M}{\partial z}=\frac{\partial P}{\partial x}, \quad \frac{\partial N}{\partial x}=\frac{\partial M}{\partial y} .
$$

If the domain of \vec{F} is all of three-dimensional space and if the equations [above] are satisfied, then there is a function f such that $\vec{F}=\operatorname{grad} f$."

Example E: Determine whether $\vec{F}=y z e^{x y z} \vec{i}+\left(x z e^{x y z}+2 y\right) \vec{j}+x y e^{x y z} \vec{k}$ is the gradient of some function f, and if so, determine f.

Example D revisited: Determine whether $\vec{F}(x, y, z)=x^{2} y \vec{i}+2 y^{3} z \vec{j}+3 z \vec{k}$ is the gradient of some function f, and if so, determine f.

Section 15.2 has a lot of stuff in it to cover, so if there's time left at the end of Lecture 15.1, we'll begin Lecture 15.2.

