Calculus 241, section 15.3 The Fundamental Theorem of Line Integrals notes by Tim Pilachowski

In chapter 5 we had the Fundamental Theorem of Calculus.

$$
\text { Given } F \text {, an antiderivative of } f, \int_{x_{0}}^{x_{1}} f(x) d x=\left.F(x)\right|_{x_{0}} ^{x_{1}}=F\left(x_{1}\right)-F\left(x_{0}\right) \text {. }
$$

Now we have Theorem 15.7, the Fundamental Theorem of Line Integrals.
"Let C be an oriented curve with an initial point $\left(x_{0}, y_{0}, z_{0}\right)$ and terminal point $\left(x_{1}, y_{1}, z_{1}\right)$. Let f be a function of three variables that is differentiable at every point on C, and assume that grad f is continuous on C. Then

$$
\int_{C} \operatorname{grad} f \bullet d r=f\left(x_{1}, y_{1}, z_{1}\right)-f\left(x_{0}, y_{0}, z_{0}\right) . "
$$

Side note: For functions of two variables, Theorem 15.7 gives us $\int_{C} \operatorname{grad} f \bullet d r=f\left(x_{1}, y_{1}\right)-f\left(x_{0}, y_{0}\right)$.
Example A: Evaluate $\int_{C} \vec{F} \bullet d \vec{r}$ where $\vec{F}(x, y, z)=2 x y z \vec{i}+x^{2} z \vec{j}+x^{2} y \vec{k}$ and C is parametrized by
$\vec{r}(t)=\frac{t}{\sqrt{t^{2}+1}} \vec{i}+\sin \frac{\pi t^{3}}{2} \vec{j}+\cos \pi t^{3} \vec{k}, \quad 0 \leq t \leq 1$. answer: $-\frac{1}{2}$

1) If vector field \vec{F} is the gradient of some function f, then we'll say that \vec{F} is conservative.
2) The Fundamental Theorem of Line Integrals tells us that, as long as $\vec{F}(=\operatorname{grad} f)$ and C meet the necessary requirements, the value of the integral $\int_{C} \vec{F} \bullet d \vec{r}$ depends only on the initial and terminal points of C. In this case, we'll say that $\int_{C} \vec{F} \bullet d \vec{r}$ is independent of path.
3) If C is a closed, oriented curve in the domain of $\vec{F}(=\operatorname{grad} f)$, i.e. the initial point is the terminal point, then $\int_{C} \vec{F} \bullet d \vec{r}=0$.
4) In section 15.1, we (and the text) noted that curl $(\operatorname{grad} f)=\overrightarrow{0}$, so that when $\vec{F}=\operatorname{grad} f$ we have curl $\vec{F}=\overrightarrow{0}$. If the domain of $\vec{F}(=\operatorname{grad} f)$ is all of three-dimensional space, then the four statements above are equivalent.

Example B. Evaluate $\int_{C} y d x+x d y$ where C is parametrized by $\vec{r}(t)=t \vec{i}+t^{2} \vec{j}, \quad 0 \leq t \leq 1$. answer: 1 First, via 15.2 methods.

Now, via 15.3 (Fundamental Theorem of Calculus).

Because this integral is independent of path, we would get the same result for any path from $(0,0)$ to $(1,1)$, whether is the parabolic path of this Example, or a linear path $[y=x]$, or a cubic path $\left[y=x^{3}\right]$, or the path determined by $\vec{r}(t)=\frac{2 t}{t^{3}+1} \vec{i}+\frac{3 t^{2}}{\sqrt{t}+2} \vec{j}, \quad 0 \leq t \leq 1$, or \ldots (You get the idea.)
15.1 Example E revisited. Evaluate $\int_{C} y z e^{x y z} d x+\left(x z e^{x y z}+2 y\right) d y+x y e^{x y z} d z$ where C is any piecewise smooth curve from
$(-1,0,1)$ to $(1,1,2)$. answer: e^{2}

