
Calculus 241, section 15.4 Green’s Theorem 
notes by Tim Pilachowski 
 

In section 15.3 we had the Fundamental Theorem of Line Integrals. 

“Let C be an oriented curve with an initial point ( )000 ,, zyx  and terminal point ( )111 ,, zyx . Let f be a function 

of three variables that is differentiable at every point on C, and assume that grad f is continuous on C. Then 
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What if, instead of evaluating an integral across a path that is a line or a curve, we want to evaluate an integral 

over a region in the plane? The text proves Green’s Theorem for simple regions in the plane. 
 

Theorem 15.8. “Let R be a simple region in the xy plane with a piecewise smooth boundary C oriented 

counterclockwise. Let M and N be functions of two variables having continuous partial derivatives on R. Then 

( ) ( ) ∫∫∫ 








∂

∂
−

∂

∂
=+

RC

dA
y

M

x

N
dyyxNdxyxM ,, .” 

 

Side notes: 1) Our single line integral over C has been transformed into a double integral over R. 
 

2) Since the boundary C must, by implication, enclose the region R, the boundary C must, by further 

implication, be closed. 
 

3) Orientation “counterclockwise” (in some texts called “positive”) means that, as we traverse the boundary of 

R, we would always have the region R to our left. 
 

4) One big advantage of Green’s Theorem is that we do not need to have a parametrization of C, as we might 

have needed to evaluate the original line integral. Often the Green’s Theorem method will be more efficient. 
 

Example A: Find ( ) ( )∫ +

C

dyyxNdxyxM ,, , where ( ) yxyxM −=, , ( ) xyxN =, , and C is the unit circle, 

oriented counterclockwise.   answer: 2π 

 

 

 

 

 

 

 

 

 

 

15.2 Example F revisited: Evaluate ∫ +

C

dyxdxyx
2  where C is the counterclockwise path around the perimeter 

of the triangle with vertices ((0, 0), (1, 0) and (1, 2).   answer: 
2
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Example B: Evaluate ( )∫ +−

C

dyxydxy
2  where C is the counterclockwise path around the perimeter of the 

rectangle cut into Quadrant I by the lines x = 1 and y = 2.   answer: 6 

To do as line integral, we’d need to evaluate across curves 321 ,, CCC  and 4C . 

 

 

 

 

 

 

 

 

 

 

Example C: Find the work done by the force field ( ) ( ) ( ) jxyiyeyxF
x

rrr
33 cos, ++−=  on a particle that travels 

once around the unit circle in a counterclockwise direction.   answer: 
2

3π  

 

 

 

 

 

 

 

 

 

 

 
 

Green’s Theorem holds for many regions which are not, in themselves, simple, but can be broken up into 

collections of simple regions. The text explores the semiannular region pictured below. 

 

 

 

 

 

 

 

 

 
 

We can think of the whole region as being split up into two simple regions with a shared boundary C*. 

The traversal of each simple region counterclockwise means that we integrate across boundary C* once going 

up and once going down.  In effect, the two integrations zero each other out, since we showed in Lecture 15.2 

that ∫∫ •−=•
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The text concludes that for this non-simple region, 
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You’ll need to follow a similar process for text practice exercise 14. 
 

1r  2r  

C* 



The text then (helpfully) points out that we have three ways to evaluate a line integral of the form ∫ •
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1) ∫∫ +=•
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2) Provided F
r

 is the gradient of some function f, use the Fundamental Theorem of Line Integrals. 

3) Provided that C is closed, use Green’s Theorem. 
 

The text also provides two alternate forms of Green’s Theorem (with explanations/proofs but not Examples).  

 

These will be used primarily in working with Stokes’s Theorem and the Divergence Theorem. 
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, where n
r

 is parallel to the normal vector N
r

 of C. 


