Calculus 241, section 15.5 Surface Integrals

notes by Tim Pilachowski

So far, in chapter 15 we have dealt with line integrals, i.e. integrals over a curve C. Even Green's Theorem, which dealt with a region R actually focused on the boundary of R which was a curve C.

Now, beginning with section 15.5 we're moving to a higher dimension to consider integrals across a surface Σ .

Definition 15.9 "Let Σ be a smooth surface with parametrization $\vec{r}(u, v) = x(u, v)\vec{i} + y(u, v)\vec{j} + z(u, v)\vec{k}$ and assume that g is continuous on Σ . Then the **surface integral** $\iint g(x, y, z) dS$ is defined by

$$\iint_{\Sigma} g(x, y, z) dS = \iint_{R} g(x(u, v), y(u, v), z(u, v)) * \| \vec{r}_{u}(u, v) \times \vec{r}_{v}(u, v) \| dA''$$

The text also notes "... it is possible to prove that the value of the surface integral in Definition 15.9 is independent of which parametrization of \vec{r} is used...the proof is technical, and we omit it."

As a way of remembering this definition, you can think of the formula as being like the change of variables formula, which was multiplied by the Jacobian.

Note that
$$\|\vec{r}_u(u,v) \times \vec{r}_v(u,v)\| = \left\|\frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v}\right\| = \left\| \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \end{vmatrix} \right\|$$
, the norm of a 3X3 determinant.

You may have to actually evaluate some of these for some text practice exercises. We'll use some shortcuts where we can in the Examples below.

Example A. Evaluate $\iint_{\Sigma} x^2 dS$, where Σ is the sphere $x^2 + y^2 + z^2 = 4$. answer: $\frac{64\pi}{3}$

Since Σ is a sphere, let's go with a spherical parametrization: $\vec{r}(\phi, \theta) = 2\sin\phi\cos\theta \vec{i} + 2\sin\phi\sin\theta \vec{j} + 2\cos\phi\vec{k}$. From section 14.9 (Parametrized Surfaces) we already have

$$\left\|\vec{r}_{\phi}\left(\phi,\theta\right)\times\vec{r}_{\theta}\left(\phi,\theta\right)\right\| = \left\|\frac{\partial\vec{r}}{\partial\phi}\times\frac{\partial\vec{r}}{\partial\theta}\right\| = \left\|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k}\\ 2\cos\phi\cos\theta & 2\cos\phi\sin\theta & -2\sin\phi\\ -2\sin\phi\sin\theta & 2\sin\phi\cos\theta & 0\end{array}\right\| = 4\sin\phi$$

Look familiar?

In cases where the surface Σ is a function of two variables *x* and *y* on a region *R* in the *xy*-plane, we have $\vec{r}(x, y) = x\vec{i} + y\vec{j} + f(x, y)\vec{k}$. Going back once again to section 14.9, we have

$$\left\|\vec{r}_{x}(x, y) \times \vec{r}_{y}(x, y)\right\| = \left\|\frac{\partial \vec{r}}{\partial x} \times \frac{\partial \vec{r}}{\partial y}\right\| = \left\|\begin{vmatrix}\vec{i} & \vec{j} & \vec{k}\\1 & 0 & \frac{\partial f}{\partial x}\\0 & 1 & \frac{\partial f}{\partial y}\end{vmatrix}\right\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^{2} + \left(\frac{\partial f}{\partial y}\right)^{2} + 1}.$$

Example B. Evaluate $\iint_{\Sigma} xz \, dS$, where Σ is the part of the plane x + y + z = 1 that lies in the first octant. answer: $\frac{\sqrt{3}}{24}$

Example C: Evaluate $\iint_{\Sigma} y^2 z^2 dS$, where Σ is the part of the cone $z = \sqrt{x^2 + y^2}$ that lies between the planes z = 1 and z = 2. answer: $\frac{21\pi\sqrt{2}}{2}$

Example D: Let the surface Σ be the part of the paraboloid $z = x^2 + y^2$ that lies below the planes z = 1. Assume that Σ has a constant density g(x, y, z) = 2. Find the mass of the surface. *answer*: $\frac{\pi}{3}(5\sqrt{5}-1)$

Two final notes: 1) The text's Example 5 evaluates an integral, for which a surface Σ is piecewise smooth, as the sum of integrals. 2) The surface area of *S* of Σ can be found by evaluating $\iint_{-1} 1 \, dS$.