Calculus 241, section 15.5 Surface Integrals

notes by Tim Pilachowski
So far, in chapter 15 we have dealt with line integrals, i.e. integrals over a curve C. Even Green's Theorem, which dealt with a region R actually focused on the boundary of R which was a curve C.
Now, beginning with section 15.5 we're moving to a higher dimension to consider integrals across a surface Σ. Definition 15.9 "Let Σ be a smooth surface with parametrization $\vec{r}(u, v)=x(u, v) \vec{i}+y(u, v) \vec{j}+z(u, v) \vec{k}$ and assume that g is continuous on Σ. Then the surface integral $\iint_{\Sigma} g(x, y, z) d S$ is defined by

$$
\iint_{\Sigma} g(x, y, z) d S=\iint_{R} g(x(u, v), y(u, v), z(u, v)) *\left\|\vec{r}_{u}(u, v) \times \vec{r}_{v}(u, v)\right\| d A "
$$

The text also notes "... it is possible to prove that the value of the surface integral in Definition 15.9 is independent of which parametrization of \vec{r} is used...the proof is technical, and we omit it."
As a way of remembering this definition, you can think of the formula as being like the change of variables formula, which was multiplied by the Jacobian.
Note that $\left\|\vec{r}_{u}(u, v) \times \vec{r}_{v}(u, v)\right\|=\left\|\frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v}\right\|=\| \| \begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v}\end{array} \|$, the norm of a 3X3 determinant.
You may have to actually evaluate some of these for some text practice exercises. We'll use some shortcuts where we can in the Examples below.

Example A. Evaluate $\iint_{\Sigma} x^{2} d S$, where Σ is the sphere $x^{2}+y^{2}+z^{2}=4$. answer: $\frac{64 \pi}{3}$
Since Σ is a sphere, let's go with a spherical parametrization: $\vec{r}(\phi, \theta)=2 \sin \phi \cos \theta \vec{i}+2 \sin \phi \sin \theta \vec{j}+2 \cos \phi \vec{k}$.
From section 14.9 (Parametrized Surfaces) we already have

$$
\left\|\vec{r}_{\phi}(\phi, \theta) \times \vec{r}_{\theta}(\phi, \theta)\right\|=\left\|\frac{\partial \vec{r}}{\partial \phi} \times \frac{\partial \vec{r}}{\partial \theta}\right\|=\left\|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 \cos \phi \cos \theta & 2 \cos \phi \sin \theta & -2 \sin \phi \\
-2 \sin \phi \sin \theta & 2 \sin \phi \cos \theta & 0
\end{array}\right\|=4 \sin \phi
$$

Look familiar?

In cases where the surface Σ is a function of two variables x and y on a region R in the $x y$-plane, we have $\vec{r}(x, y)=x \vec{i}+y \vec{j}+f(x, y) \vec{k}$. Going back once again to section 14.9, we have

$$
\left\|\vec{r}_{x}(x, y) \times \vec{r}_{y}(x, y)\right\|=\left\|\frac{\partial \vec{r}}{\partial x} \times \frac{\partial \vec{r}}{\partial y}\right\|=\left\|\left.\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 0 & \frac{\partial f}{\partial x} \\
0 & 1 & \frac{\partial f}{\partial y}
\end{array} \right\rvert\,\right\|=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}+1} .
$$

Example B. Evaluate $\iint_{\Sigma} x z d S$, where Σ is the part of the plane $x+y+z=1$ that lies in the first octant. answer: $\frac{\sqrt{3}}{24}$

Example C: Evaluate $\iint_{\Sigma} y^{2} z^{2} d S$, where Σ is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ that lies between the planes z $=1$ and $z=2$. answer: $\frac{21 \pi \sqrt{2}}{2}$

Example D: Let the surface Σ be the part of the paraboloid $z=x^{2}+y^{2}$ that lies below the planes $z=1$. Assume that Σ has a constant density $g(x, y, z)=2$. Find the mass of the surface. answer: $\frac{\pi}{3}(5 \sqrt{5}-1)$

Two final notes: 1) The text's Example 5 evaluates an integral, for which a surface Σ is piecewise smooth, as the sum of integrals. 2) The surface area of S of Σ can be found by evaluating $\iint_{\Sigma} 1 d S$.

