## Calculus 241, section 15.6 Integrals over Oriented Surfaces

notes by Tim Pilachowski
In section 15.2 we looked first at line integrals of a function,

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) *\left\|\frac{d \vec{r}}{d t}\right\| d t
$$

for which orientation was not an issue. When we turned to line integrals of a vector field,

$$
\int_{C} \vec{F} \bullet d \vec{r}=\int_{a}^{b} \vec{F}(x(t), y(t), z(t)) \bullet \frac{d \vec{r}}{d t} d t=\int_{a}^{b} \vec{F}(\vec{r}(t)) \bullet \frac{d \vec{r}}{d t} d t
$$

the orientation of the vector field was important.
Now, in section 15.6 we take the surface integrals of a function from section 15.5,

$$
\iint_{\Sigma} g(x, y, z) d S=\iint_{R} g(x(u, v), y(u, v), z(u, v)) *\left\|\vec{r}_{u}(u, v) \times \vec{r}_{v}(u, v)\right\| d A,
$$

and turn to surface integrals of a vector field, for which orientation will also be important.
For the surfaces $\Sigma$ which we have considered thus far, there are two sides, which we'll think of as an "inside" and an "outside". In such a case we'll call the surface orientable or two-sided. Specifically, we'll assume that a surface $\Sigma$ has a tangent plane at each of its nonboundary points, and thus that the surface has two normals pointing in opposite directions. "When $\Sigma$ is the boundary of a solid region $D$ in space, we customarily choose the normal to $\Sigma$ that is directed outward from $D$."

Not all surfaces are orientable. Your text discusses a Möbius strip or Möbius band, which is one-sided.
You can read through the text's development of the underlying idea: a fluid of constant density $\delta$ flowing with a constant velocity $\vec{v}$ through a membrane $\Sigma$. We get a flux integral, $\iint_{\Sigma} \vec{F} \bullet \vec{n} d S$. [We'll refer to this type as a flux integral or we'll say "Find the flux of the vector field $\vec{F}$ " even when $\vec{F}$ is not a velocity.]
Recall from section 14.9 , when $\Sigma$ has a parametrization

$$
\vec{r}(u, v)=x(u, v) \vec{i}+y(u, v) \vec{j}+z(u, v) \vec{k}
$$

unit vectors which are normal to the surface are given by

$$
\vec{n}= \pm\left[\frac{\vec{r}_{u}(u, v) \times \vec{r}_{v}(u, v)}{\left\|\vec{r}_{u}(u, v) \times \vec{r}_{v}(u, v)\right\|}\right]= \pm\left[\frac{\frac{\partial \vec{r}}{\partial u}(u, v) \times \frac{\partial \vec{r}}{\partial v}(u, v)}{\left\|\frac{\partial \vec{r}}{\partial u}(u, v) \times \frac{\partial \vec{r}}{\partial v}(u, v)\right\|}\right]
$$

We'll choose the " + " or " - " version based on which vector has an outward orientation.
When we set up our flux integral á la section 15.5, the denominator will cancel, giving us

$$
\begin{aligned}
& \iint_{\Sigma} \vec{F} \bullet \vec{n} d S= \pm \iint_{R} \vec{F}(x(u, v), y(u, v), z(u, v)) \bullet\left(\vec{r}_{u}(u, v) \times \vec{r}_{v}(u, v)\right) d A \\
&= \pm \iint_{R}\left[M(x(u, v), y(u, v), z(u, v)) * \frac{\partial(y, z)}{\partial(u, v)}\right.+N(x(u, v), y(u, v), z(u, v)) * \frac{\partial(z, x)}{\partial(u, v)} \\
&\left.+P(x(u, v), y(u, v), z(u, v)) * \frac{\partial(x, y)}{\partial(u, v)}\right] d A
\end{aligned}
$$

Looks pretty intimidating, doesn't it?
Let's put it into practice.

Example A. Find the flux of the vector field $\vec{F}(x, y, z)=z \vec{k}$ across the sphere $x^{2}+y^{2}+z^{2}=4$. answer: $\frac{32 \pi}{3}$

Example B. Find the flux of the vector field $\vec{F}(x, y, z)=y z \vec{i}+x \vec{j}+z^{2} \vec{k}$ outward through the parabolic cylinder $y=x^{2}$ for $0 \leq x \leq 1,0 \leq z \leq 4$. answer: 2

Example C. Suppose we want to find the flux of a vector field $\vec{F}(x, y, z)$ outward through the portion of the surface of the cylinder $y^{2}+z^{2}=1, \quad z \geq 0$, that lies between $x=0$ and $x=1$. Determine the correct outwardoriented normal vector. answer: $n=\cos \theta \vec{i}+\sin \vec{j}$

In cases where the surface $\Sigma$ is a function of two variables $x$ and $y$ in a region $R$ in the $x y$-plane, we have $\vec{r}(x, y)=x \vec{i}+y \vec{j}+f(x, y) \vec{k}$. Going back once again to section 14.9, we have

$$
\vec{r}_{x}(x, y) \times \vec{r}_{y}(x, y)=\frac{\partial \vec{r}}{\partial x} \times \frac{\partial \vec{r}}{\partial y}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 0 & \frac{\partial f}{\partial x} \\
0 & 1 & \frac{\partial f}{\partial y}
\end{array}\right|=-\frac{\partial f}{\partial x} \vec{i}-\frac{\partial f}{\partial y} \vec{j}+\vec{k}
$$

Given $\vec{F}(x, y, z)=M(x, y, z) \vec{i}+N(x, y, z) \vec{j}+P(x, y, z) \vec{k}$, we get

$$
\begin{aligned}
\iint_{\Sigma} \vec{F} \bullet \vec{n} d S & = \pm \iint_{R}[M(x, y, z) \vec{i}+N(x, y, z) \vec{j}+P(x, y, z) \vec{k}] \bullet\left[-\frac{\partial f}{\partial x} \vec{i}-\frac{\partial f}{\partial y} \vec{j}+\vec{k}\right] d A \\
& = \pm \iint_{R}\left[-M(x, y, f(x, y)) * \frac{\partial f}{\partial x}-N(x, y, f(x, y)) * \frac{\partial f}{\partial y}+P(x, y, f(x, y))\right] d A
\end{aligned}
$$

When "outward" is "pointing up", we'll choose the "+" version, and when "outward" is "pointing down", we'll choose the "-" version.

Example D. Let $\Sigma$ be the portion of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the $x y$-plane. Find the flux of the vector field $\vec{F}(x, y, z)=x \vec{i}+y \vec{j}+z \vec{k}$ across $\Sigma$. answer: $24 \pi$

Last thought: There is a sum rule for $\iint_{\Sigma} \vec{F} \bullet \vec{n} d S$, just like for other integrals. See the text's Example 3.

