Calculus 241, section 15.7 Stokes's Theorem

notes by Tim Pilachowski

In section 15.4 we looked at Green's Theorem.

Theorem 15.8. "Let R be a simple region in the xy plane with a piecewise smooth boundary C oriented counterclockwise. Let M and N be functions of two variables having continuous partial derivatives on R. Then

$$\int_{C} M(x, y) dx + N(x, y) dy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA ."$$

Now we're going to extend from plane regions and their boundaries to three-dimensional surfaces and their boundaries with Stokes's Theorem.

Theorem 15.10. "Let Σ be an oriented surface with normal \vec{n} and finite surface area. Assume that Σ is bounded by a closed, piecewise smooth curve *C* whose orientation is induced by Σ ... Let \vec{F} be a continuous vector field defined on Σ , and assume that the composite functions of \vec{F} have continuous partial derivatives at each nonboundary point of Σ . Then

$$\int_{C} \vec{F} \bullet d\vec{r} = \iint_{\Sigma} \left(\operatorname{curl} \vec{F} \right) \bullet \vec{n} \, dS$$

If $\vec{F} = M \vec{i} + N \vec{j} + P \vec{k}$, then $\int_{C} M(x, y, z) dx + N(x, y, z) dy + P(x, y, z) dz = \iint_{\Sigma} (\operatorname{curl} \vec{F}) \bullet \vec{n} dS.$

Side notes: 1) Stokes's Theorem is a direct extension of the first alternate form of Green's Theorem introduced at the end of Lecture 15.4: $\int_C \vec{F} \cdot dr = \iint_R \operatorname{curl} \vec{F} \cdot \vec{k} \, dA.$

2) Since the boundary *C* must, by implication, enclose the surface Σ , the boundary *C* must, by further implication, be closed.

3) The text states that the proof of Stokes's Theorem is beyond the scope of this course, but does give an outline of the proof for a narrow situation covered by Stokes's Theorem.

4) Once we get the integration with the curl set up, the evaluation will look like section 15.6,

$$\int_{C} \vec{F} \bullet d\vec{r} = \iint_{\Sigma} \left(\operatorname{curl} \vec{F} \right) \bullet \vec{n} \, dS = \pm \iint_{R} \left[\operatorname{curl} \vec{F} \left(x(u, v), y(u, v), z(u, v) \right) \right] \bullet \left(\vec{r}_{u}(u, v) \times \vec{r}_{v}(u, v) \right) dA.$$

Example A. Find the work performed by force field $\vec{F}(x, y, z) = x^2 \vec{i} + 4xy^3 \vec{j} + y^2 x \vec{k}$ on the particle that traverses a rectangle in the plane z = y with $0 \le x \le 1$ and $0 \le y \le 3$ and with a downward orientation. *answer*: -90

The text considers a similar situation in Example 1, with the differences that the surface Σ is a triangle (so that the boundaries for y involve a function of x rather than a number value) and the induced orientation is upward.

Example B. Given the vector field $\vec{F}(x, y, z) = 2z\vec{i} + 3x\vec{j} + 5y\vec{k}$, evaluate $\int_C \vec{F} \cdot d\vec{r}$ where Σ is the portion of

the paraboloid $z = 4 - x^2 - y^2$ above the *xy*-plane. Assume *C* has its counterclockwise orientation as viewed from above. *answer*: 12π