Calculus 241, section 15.7 Stokes's Theorem

notes by Tim Pilachowski
In section 15.4 we looked at Green's Theorem.
Theorem 15.8. "Let R be a simple region in the $x y$ plane with a piecewise smooth boundary C oriented counterclockwise. Let M and N be functions of two variables having continuous partial derivatives on R. Then

$$
\int_{C} M(x, y) d x+N(x, y) d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A . "
$$

Now we're going to extend from plane regions and their boundaries to three-dimensional surfaces and their boundaries with Stokes's Theorem.
Theorem 15.10. "Let Σ be an oriented surface with normal \vec{n} and finite surface area. Assume that Σ is bounded by a closed, piecewise smooth curve C whose orientation is induced by $\Sigma \ldots$ Let \vec{F} be a continuous vector field defined on Σ, and assume that the composite functions of \vec{F} have continuous partial derivatives at each nonboundary point of Σ. Then

$$
\int_{C} \vec{F} \bullet d \vec{r}=\iint_{\Sigma}(\operatorname{curl} \vec{F}) \bullet \vec{n} d S .
$$

If $\vec{F}=M \vec{i}+N \vec{j}+P \vec{k}$, then

$$
\int_{C} M(x, y, z) d x+N(x, y, z) d y+P(x, y, z) d z=\iint_{\Sigma}(\operatorname{curl} \vec{F}) \bullet \vec{n} d S . "
$$

Side notes: 1) Stokes's Theorem is a direct extension of the first alternate form of Green's Theorem introduced at the end of Lecture 15.4: $\int_{C} \vec{F} \bullet d r=\iint_{R} \operatorname{curl} \vec{F} \bullet \vec{k} d A$.
2) Since the boundary C must, by implication, enclose the surface Σ, the boundary C must, by further implication, be closed.
3) The text states that the proof of Stokes's Theorem is beyond the scope of this course, but does give an outline of the proof for a narrow situation covered by Stokes's Theorem.
4) Once we get the integration with the curl set up, the evaluation will look like section 15.6 ,

$$
\int_{C} \vec{F} \bullet d \vec{r}=\iint_{\Sigma}(\operatorname{curl} \vec{F}) \bullet \vec{n} d S= \pm \iint_{R}[\operatorname{curl} \vec{F}(x(u, v), y(u, v), z(u, v))] \bullet\left(\vec{r}_{u}(u, v) \times \vec{r}_{v}(u, v)\right) d A
$$

Example A. Find the work performed by force field $\vec{F}(x, y, z)=x^{2} \vec{i}+4 x y^{3} \vec{j}+y^{2} x \vec{k}$ on the particle that traverses a rectangle in the plane $z=y$ with $0 \leq x \leq 1$ and $0 \leq y \leq 3$ and with a downward orientation. answer: -90

The text considers a similar situation in Example 1, with the differences that the surface Σ is a triangle (so that the boundaries for y involve a function of x rather than a number value) and the induced orientation is upward.
Example B. Given the vector field $\vec{F}(x, y, z)=2 z \vec{i}+3 x \vec{j}+5 y \vec{k}$, evaluate $\int_{C} \vec{F} \bullet d \vec{r}$ where Σ is the portion of the paraboloid $z=4-x^{2}-y^{2}$ above the $x y$-plane. Assume C has its counterclockwise orientation as viewed from above. answer: 12π

