Calculus 241, section 15.8 The Divergence Theorem (Gauss's Theorem)

 notes by Tim PilachowskiAt the end of section 15.4 we introduced an alternate version of Green's Theorem:

$$
\int_{C} \vec{F} \bullet \vec{n} d r=\iint_{R} \operatorname{div} \vec{F}(x, y) d A \text {, where } \vec{n} \text { is parallel to the normal vector } \vec{N} \text { of } C \text {. }
$$

Now we extend this idea to a simple solid region D, that is a region whose projection is simple with respect to the $x y$-plane, the $x z$-plane, and the $y z$-plane.
Theorem 15.11. "Let D be a simple solid whose boundary surface Σ is oriented by the normal \vec{n} directed outward from D, and let \vec{F} be a vector field whose composite functions have continuous partial derivatives on D. Then

$$
\iint_{\Sigma} \vec{F} \bullet \vec{n} d S=\iiint_{D} \operatorname{div} \vec{F}(x, y, z) d V . "
$$

Side notes: 1) The text proves the Divergence Theorem. I'll let you look at that on your own.
2) The Divergence Theorem takes an integral across a surface and transforms it into an integral over a region, usually one which is easier to evaluate.
3) Like Green's Theorem which was proven for a simple region then extended to non-simply connected regions, the Divergence Theorem holds for any solid region that can be decomposed into finitely many simple solid regions.

Example A. Find the flux of $\vec{F}=x y \vec{i}+y z \vec{j}+x z \vec{k}$ outward through the surface of the cube cut from the first octant by the planes planes $x=2, y=2$ and $z=2$. answer: 24

Example B. Find the outward flux of $\vec{F}=x^{3} \vec{i}+y^{3} \vec{j}+z^{2} \vec{k}$ across the surface of the region enclosed by the cylinder $x^{2}+y^{2}=9$ and the planes $z=0$ and $z=2$. answer: 279π

Example C. Find the outward flux of $\vec{F}=x^{3} \vec{i}+y^{3} \vec{j}+z^{3} \vec{k}$ across the surface of the region enclosed by the hemisphere $z=\sqrt{4-x^{2}-y^{2}}$ and the plane $z=0$. answer: $\frac{192 \pi}{5}$
15.6 Example A revisited. Find the flux of the vector field $\vec{F}(x, y, z)=z \vec{k}$ across the sphere $x^{2}+y^{2}+z^{2}=4$. answer: $\frac{32 \pi}{3}$
In Lecture 15.6, this example took the equivalent of half of a page of work.

