Matlab Project 2 Tim Pilachowski's sections
The due date is provided on the course schedule.
Turn in a printout of your published m-file. See Justin's guide for instructions on how to write an m-file and how to publish it.

Each of questions 1-3 and 5-8 should be done in a single Matlab entry. (The view command can be on a separate line.) The remaining questions can be broken up into several lines for neatness. In the $m$-file each numbered question should be separated by $\% \%$ as the guide indicates.

While the points below add up to 26 points, Project 2 will graded out of 25 . (In other words, there's a bonus point
built in.

1. (1 point) Clear Matlab completely with clear all.
2. (2 points) Plot the function $f(x, y)=\sqrt{x^{2}+y^{2}}$ with the view at $(10,10,10)$.
3. (2 points) Plot the function $f(x, y)=\sqrt{4-x^{2}-y^{2}}$ with the view at $(10,10,10)$.
4. (2 points) Plot the surface $y=9-x^{2}$ with the view at $(10,10,10)$.
5. (2 points) Given $f(x, y)=y \sin \left(x^{2} y^{3}\right)$ find $\frac{\partial f}{\partial y}$.
6. (2 points) Given $f(x, y)=\frac{x^{2}-y}{x+y}$ find $\frac{\partial^{2} f}{\partial y \partial x}$.
7. (2 points) Given $f(x, y)=x \ln \left(x y^{2}\right)+x y$ find $\nabla f$. (Remember that, in Matlab, the function " $\ln$ " is entered log.)
8. (2 points) Given $f(x, y)=5 x^{3} y^{2}-\frac{y}{x}$ find $\nabla f(-1,0)$.
9. (2 points) Find the directional derivative of $f(x, y)=x^{3}+y^{2}$ at $(-2,2)$ in the direction of $\vec{a}=3 \vec{i}+2 \vec{j}$.
10. (3 points) Find all critical points for $f(x, y)=(y-2) \ln (x y)$. On your printout write both coordinates of your critical points next to the output.
11. (3 points) Find all critical points for $f(x, y)=x^{3}+y^{3}-6 x y$. On your printout write both coordinates of your critical points next to the output.
12. (3 points) Use Lagrange multipliers to find the maximum and minimum values of $f(x, y)=x^{2} y$ subject to the constraint $x+y^{2}=16$.
