Matlab Project 3 Tim Pilachowski’s sections

The due date is provided on the course schedule.
Turn in a printout of your published m-file. See Justin's guide for instructions on how to write an mfile and how to publish it.
Put the command lines for each question in the m-file separated by a blank line then a $\% \%$ line and then another blank line.

Each question should start with a clear all line followed by the declaration of any symbolic variables necessary for that problem. In other words each question should be completely self-contained.
All 3D graphs should have view ([10 10 10]) set.

1. Plot the portion of $x^{2}+z^{2}=9$ above the $x y$-plane and between $y=-1$ and $y=2$.
2. Plot the portion of the cone $z=9-\sqrt{x^{2}+y^{2}}$ inside the cylinder $r=2$.
3. Plot the vector field $\vec{F}(x, y)=0.2\left(x^{2}+y^{2}\right) \vec{i}+0.2(x-y) \vec{j}$ using meshgrid ($-5: 1: 5$, 5:1:5).
4. A piece of wire is in the shape of the circle $x^{2}+y^{2}=1$. The density at any point is given by $\delta(x, y)=x^{2}+y^{4}$. Find the mass of the wire.
side information, not needed to answer the question: $\delta(x, y)$ could be in grams per cm in which case the mass would be grams.
5. Evaluate the line integral $\int_{C} x+y d s$ where C is the straight line segment from $(0,1,1)$ to $(3,2,2)$.
6. Evaluate the line integral $\int_{C} y z d x+y z d y+y d z$ where C is the top half of $y^{2}+z^{2}=4$ in the $y z$-plane traveling from left to right.
7. Suppose Σ is the portion of the plane $z=10-x-y$ inside the cylinder $x^{2}+y^{2}=1$. The surface Σ is submerged in an electric field such that at any point the electric charge density is
$\delta(x, y, z)=x^{2}+y^{2}$. Find the total amount of electric charge on the surface.
side information, not needed to answer the question: $\delta(x, y, z) \delta(\mathrm{x}, \mathrm{y}, \mathrm{z})$ could be in coulombs per cubic centimeter in which case the total charge would be in coulombs.
8. A fluid is flowing through space following the vector field $\vec{F}(x, y)=y \vec{i}-x \vec{j}+z \vec{k}$. A filter is in the shape of the portion of the paraboloid $z=x^{2}+y^{2}$ with $0 \leq x \leq 3$ and $0 \leq y \leq 3$, oriented inwards (and upwards). Find the rate at which the fluid is moving through the filter.
side information, not needed to answer the question: The fluid flow \vec{F} could have units $\mathrm{g} /\left(\mathrm{cm}^{2} \mathrm{~s}\right)$ in which case the total flow would be in grams per second.
