Math 241 Parametrization of Surfaces

First make sure that you understand what a parametrization of a surface Σ actually means. To say that Σ is parametrized by $\bar{r}(u, v)=x(u, v) \hat{\imath}+y(u, v) \hat{\jmath}+z(u, v) \hat{k}$ for all u, v within the region R in the $u v$-plane means that if you take all possible u and v with in your region R then you get the entire surface with the resulting points $(x(u, v), y(u, v), z(u, v))$. In other words think of the vectors $\bar{r}(u, v)$ as just being points.
For example, consider the parametrization $\bar{r}(x, y)=x \hat{\imath}+y \hat{\jmath}+2 \hat{k}$ with $0 \leq x \leq 2$ and $0 \leq y \leq 3$. As x varies and y varies within their allowable ranges we get all the points $(x, y, 2)$ with $0 \leq x \leq 2$ and $0 \leq y \leq 3$. This gives us a small rectangular piece of the plane $z=2$.
This is a very simple example but is a good start. Here are a series of ideas you can consider when presented with a description of Σ. Following each are some problems which fit that criteria. Some have solutions, some have hints, some have notes.

1. Is Σ a part of the graph of a function $z=f(x, y)$ defined on some x, y which are themselves nicely parametrized by rectangular coordinates? If so then we can use $\bar{r}(x, y)=x \hat{\imath}+y \hat{\jmath}+f(x, y) \hat{k}$ with R the region of allowable x and y.
(a) Example: Σ is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ above the rectangle in the $x y$-plane with opposite corners $(1,0)$ and $(2,5)$.
Solution: $\bar{r}(x, y)=x \hat{\imath}+y \hat{\jmath}+\sqrt{x^{2}+y^{2}} \hat{k}$ with $1 \leq x \leq 2$ and $0 \leq y \leq 5$.
(b) Example: Σ is the part of the paraboloid $z=9-x^{2}-y^{2}$ above the triangle in the $x y$-plane with corners $(0,0),(4,0)$ and $(0,2)$.
(c) Example: Σ is the part of the plane $z=20-x-2 y$ above R, where R is the region in the $x y$-plane between $y=x^{2}$ and $y=4$.
Hint: You'll need to parametrize R as vertically simple.
2. Is Σ a part of the graph of a function $z=f(x, y)$ defined on some x, y which are themselves nicely parametrized by polar coordinates? If so then we can use $\bar{r}(r, \theta)=r \cos \theta \hat{\imath}+r \sin \theta \hat{\jmath}+f(r \cos \theta, r \sin \theta) \hat{k}$, with R the region of allowable r and θ.
Try not to think of r and θ as polar coordinates here though, just think of them as variables with a certain range and as they vary over that range the function $\bar{r}(r, \theta)$ gives all the points on the surface. For example if your parametrization for some problem turned out to be $\bar{r}(r, \theta)=r \cos \theta \hat{\imath}+r \sin \theta \hat{\jmath}+r^{3} \hat{k}$ for $0 \leq \theta \leq \pi$ and $0 \leq r \leq \sin \theta$ then you could just as readily use any variables, for example $\bar{r}(t, q)=t \cos q \hat{\imath}+t \sin q \hat{\jmath}+t^{3} \hat{k}$ for $0 \leq q \leq \pi$ and $0 \leq t \leq \sin q$. No difference. You're just using what you know about polar coordinates to come up with the parametrization.
(a) Example: Σ is the part of the cone $z=2+\sqrt{x^{2}+y^{2}}$ inside the cylinder $x^{2}+y^{2}=4$.
(b) Example: Σ is the part of the parabolic sheet $z=y^{2}$ inside the cylinder $r=\sin \theta$.

Solution: $\bar{r}(r, \theta)=r \cos \theta \hat{\imath}+r \sin \theta \hat{\jmath}+r^{2} \sin ^{2} \theta \hat{k}$ for $0 \leq \theta \leq \pi$ and $0 \leq r \leq \sin \theta$.
(c) Example: Σ is the part of the plane $z=20-x-2 y$ in the first octant and inside $r=2$.
3. In some cases the above two situations can also work with the variables switched around in the cases where Σ is part of a surface given by $x=f(y, z)$ or $y=f(x, z)$. This is rare but it's useful to work some out.
(a) Example: Σ is the part of the paraboloid $y=x^{2}+z^{2}$ to the right of the square in the $x z$-plane with corners $(0,0),(2,0),(0,2)$ and $(2,2)$.
Hint: Your two variables will be x and z. The region R will be in the $x z$-plane and y will depend upon x and z.
(b) Example: Σ is the part of the parabolic sheet $x=16-z^{2}$ inside the cylinder $y^{2}+z^{2}=9$. Hint: Since x depends on z and since y and z always lie within a circle we should use what we know about polar coordinates but with the variables switched. Try using $y=r \cos \theta$ and $z=r \sin \theta$. What would x be? How would R be described and in what plane?
4. If none of these are the case then we need to custom-design a parametrization based upon the surface in question. It may also be the case that a problem can be done in one of the previous ways but it simply works out better this way.
(a) Example: Σ is the part of the cylinder $x^{2}+y^{2}=9$ between $z=0$ and $z=2$.

Hint: z is free to vary between 0 and 2 independent of x and y so it should be its own variable. Can x and y both be determined by some other variable, perhaps θ ?
(b) Example: Σ is the part of the cylinder $x^{2}+z^{2}=9$ between $y=0$ and $y=2$.

Hint: Tweak the previous example.
(c) Example: Σ is the part of the sphere $x^{2}+y^{2}+z^{2}=9$ below the cone $z=\sqrt{x^{2}+y^{2}}$.

Hint: Your knowledge of spherical coordinates should give you a parametrization $\bar{r}(\phi, \theta)$.
(d) Example: Σ is the part of the cylinder $x^{2}+y^{2}=9$ between $z=0$ and $z=2$ and in the first octant.
Note: We could treat this part of the cylinder as $y=\sqrt{9-x^{2}}$ then do $\bar{r}(x, z)=x \hat{\imath}+$ $\sqrt{9-x^{2}} \hat{\jmath}+z \hat{k}$ for $0 \leq x \leq 3$ and $0 \leq z \leq 2$ but this is not so pretty.
Instead how about $\bar{r}(z, \theta)=3 \cos \theta \hat{\imath}+3 \sin \theta \hat{\jmath}+z \hat{k}$ for $0 \leq \theta \leq \pi / 2$ and $0 \leq z \leq 2$.
(e) Example: Σ is the part of the sphere $x^{2}+y^{2}+z^{2}=9$ above the $x y$-plane.

Note: This can be done solving for z and treating it as function of x and y and using polar but it's certainly much easier using spherical coordinates to get a parametrization.

