Math 241 Parametrization of Surfaces

First make sure that you understand what a parametrization of a surface Σ actually means. To say that Σ is parametrized by $\bar{r}(u,v) = x(u,v)\,\hat{\imath} + y(u,v)\,\hat{\jmath} + z(u,v)\,\hat{k}$ for all u,v within the region R in the uv-plane means that if you take all possible u and v with in your region R then you get the entire surface with the resulting points (x(u,v),y(u,v),z(u,v)). In other words think of the vectors $\bar{r}(u,v)$ as just being points.

For example, consider the parametrization $\bar{r}(x,y) = x\,\hat{\imath} + y\,\hat{\jmath} + 2\,\hat{k}$ with $0 \le x \le 2$ and $0 \le y \le 3$. As x varies and y varies within their allowable ranges we get all the points (x,y,2) with $0 \le x \le 2$ and $0 \le y \le 3$. This gives us a small rectangular piece of the plane z = 2.

This is a very simple example but is a good start. Here are a series of ideas you can consider when presented with a description of Σ . Following each are some problems which fit that criteria. Some have solutions, some have hints, some have notes.

1. Is Σ a part of the graph of a function z = f(x, y) defined on some x, y which are themselves nicely parametrized by rectangular coordinates? If so then we can use

 $\bar{r}(x,y) = x\,\hat{\imath} + y\,\hat{\jmath} + f(x,y)\,\hat{k}$ with R the region of allowable x and y.

(a) **Example:** Σ is the part of the cone $z = \sqrt{x^2 + y^2}$ above the rectangle in the xy-plane with opposite corners (1,0) and (2,5).

Solution: $\bar{r}(x,y) = x \hat{\imath} + y \hat{\jmath} + \sqrt{x^2 + y^2} \hat{k}$ with $1 \le x \le 2$ and $0 \le y \le 5$.

- (b) **Example:** Σ is the part of the paraboloid $z = 9 x^2 y^2$ above the triangle in the xy-plane with corners (0,0), (4,0) and (0,2).
- (c) **Example:** Σ is the part of the plane z = 20 x 2y above R, where R is the region in the xy-plane between $y = x^2$ and y = 4.

Hint: You'll need to parametrize R as vertically simple.

2. Is Σ a part of the graph of a function z = f(x, y) defined on some x, y which are themselves nicely parametrized by polar coordinates? If so then we can use

 $\bar{r}(r,\theta) = r\cos\theta \,\hat{i} + r\sin\theta \,\hat{j} + f(r\cos\theta,r\sin\theta) \,\hat{k}$, with R the region of allowable r and θ .

Try not to think of r and θ as polar coordinates here though, just think of them as variables with a certain range and as they vary over that range the function $\bar{r}(r,\theta)$ gives all the points on the surface. For example if your parametrization for some problem turned out to be $\bar{r}(r,\theta)=r\cos\theta\,\hat{\imath}+r\sin\theta\,\hat{\jmath}+r^3\,\hat{k}$ for $0\le\theta\le\pi$ and $0\le r\le\sin\theta$ then you could just as readily use any variables, for example $\bar{r}(t,q)=t\cos q\,\hat{\imath}+t\sin q\,\hat{\jmath}+t^3\,\hat{k}$ for $0\le q\le\pi$ and $0\le t\le\sin q$. No difference. You're just using what you know about polar coordinates to come up with the parametrization.

- (a) **Example:** Σ is the part of the cone $z=2+\sqrt{x^2+y^2}$ inside the cylinder $x^2+y^2=4$.
- (b) **Example:** Σ is the part of the parabolic sheet $z = y^2$ inside the cylinder $r = \sin \theta$. **Solution:** $\bar{r}(r,\theta) = r \cos \theta \,\hat{\imath} + r \sin \theta \,\hat{\jmath} + r^2 \sin^2 \theta \,\hat{k}$ for $0 \le \theta \le \pi$ and $0 \le r \le \sin \theta$.
- (c) **Example:** Σ is the part of the plane z = 20 x 2y in the first octant and inside r = 2.

- 3. In some cases the above two situations can also work with the variables switched around in the cases where Σ is part of a surface given by x = f(y, z) or y = f(x, z). This is rare but it's useful to work some out.
 - (a) **Example:** Σ is the part of the paraboloid $y = x^2 + z^2$ to the right of the square in the xz-plane with corners (0,0), (2,0), (0,2) and (2,2).

Hint: Your two variables will be x and z. The region R will be in the xz-plane and y will depend upon x and z.

- (b) **Example:** Σ is the part of the parabolic sheet $x=16-z^2$ inside the cylinder $y^2+z^2=9$. **Hint:** Since x depends on z and since y and z always lie within a circle we should use what we know about polar coordinates but with the variables switched. Try using $y=r\cos\theta$ and $z=r\sin\theta$. What would x be? How would x be described and in what plane?
- 4. If none of these are the case then we need to custom-design a parametrization based upon the surface in question. It may also be the case that a problem can be done in one of the previous ways but it simply works out better this way.
 - (a) **Example:** Σ is the part of the cylinder $x^2 + y^2 = 9$ between z = 0 and z = 2. **Hint:** z is free to vary between 0 and 2 independent of x and y so it should be its own variable. Can x and y both be determined by some other variable, perhaps θ ?
 - (b) **Example:** Σ is the part of the cylinder $x^2 + z^2 = 9$ between y = 0 and y = 2. **Hint:** Tweak the previous example.
 - (c) **Example:** Σ is the part of the sphere $x^2 + y^2 + z^2 = 9$ below the cone $z = \sqrt{x^2 + y^2}$. **Hint:** Your knowledge of spherical coordinates should give you a parametrization $\bar{r}(\phi, \theta)$.
 - (d) **Example:** Σ is the part of the cylinder $x^2 + y^2 = 9$ between z = 0 and z = 2 and in the first octant.

Note: We could treat this part of the cylinder as $y = \sqrt{9 - x^2}$ then do $\bar{r}(x, z) = x \hat{\imath} + \sqrt{9 - x^2} \hat{\jmath} + z \hat{k}$ for $0 \le x \le 3$ and $0 \le z \le 2$ but this is not so pretty. Instead how about $\bar{r}(z, \theta) = 3\cos\theta \,\hat{\imath} + 3\sin\theta \,\hat{\jmath} + z \,\hat{k}$ for $0 \le \theta \le \pi/2$ and $0 \le z \le 2$.

(e) **Example:** Σ is the part of the sphere $x^2 + y^2 + z^2 = 9$ above the xy-plane. **Note:** This can be done solving for z and treating it as function of x and y and using polar but it's certainly much easier using spherical coordinates to get a parametrization.