Math 241 Exam 1 Sample 3 Solutions

1. (a) We have $\overline{P Q}=2 \hat{\imath}-2 \hat{\jmath}-1 \hat{k}$ and to make it length 1 we:

$$
\frac{\overline{P Q}}{\| \overline{P Q \|}}=\frac{2 \hat{\imath}-2 \hat{\jmath}-1 \hat{k}}{\sqrt{4+4+1}}
$$

(b) We need

$$
\begin{aligned}
(\alpha \hat{\imath}-2 \hat{\jmath}+\alpha \hat{k}) \cdot(2 \hat{\imath}+5 \hat{\jmath}) & =0 \\
2 \alpha-10 & =0 \\
\alpha & =5
\end{aligned}
$$

(c) We have

$$
\operatorname{Pr}_{\bar{b}} \bar{a}=\frac{\bar{b} \cdot \bar{a}}{\bar{b} \cdot \bar{b}}=\frac{2+10}{1+4+9}(1 \hat{\imath}+2 \hat{\jmath}+3 \hat{k})
$$

2. (a) The plane has $\bar{N}=2 \hat{\imath}+3 \hat{\jmath}-1 \hat{k}$ and a point is $P=(2,0,0)$ (any points satisfying the equation). Then with $Q=(3,2,1)$ we have $\overline{P Q}=1 \hat{\imath}+2 \hat{\jmath}+1 \hat{k}$ and so

$$
d=\frac{|\bar{N} \cdot \overline{P Q}|}{\|\bar{N}\|}=\frac{|2+6-1|}{\sqrt{4+9+1}}
$$

(b) First:

$$
\begin{aligned}
& \bar{r}(t)=t \hat{\imath}+\sin t \hat{\jmath} \\
& \bar{v}(t)=1 \hat{\imath}+\cos t \hat{\jmath} \\
& \bar{a}(t)=0 \hat{\imath}-\sin t \hat{\jmath}
\end{aligned}
$$

Then $\|\bar{a} \times \bar{v}\|=\sin t \hat{k}$ and so

$$
\begin{aligned}
\kappa(t) & =\frac{\|\bar{a} \times \bar{v}\|}{\|\bar{v}\|^{3}} \\
\kappa(t) & =\frac{\sqrt{\sin ^{2} t}}{\left(1+\cos ^{2} t\right)^{3 / 2}} \\
\kappa(\pi / 2) & =\frac{1}{(1+0)^{3 / 2}}
\end{aligned}
$$

3. (a) The graph is:

(b) The parabolic part is $\bar{r}(t)=t \hat{\imath}+t^{2} \hat{\jmath}$ for $-1 \leq t \leq 2$.

The straight part is $\bar{r}(t)=(2-3 t) \hat{\imath}+(4-3 t) \hat{\jmath}$ for $0 \leq t \leq 1$.
4. (a) The vector is $\bar{L}=3 \hat{\imath}-4 \hat{\jmath}-2 \hat{k}$ and so using the first point we have

$$
\frac{x-1}{3}=\frac{y-2}{-4}=\frac{z-3}{-2}
$$

(b) Start with:

$$
\begin{aligned}
\bar{a}(t) & =2 \hat{\imath} \\
\bar{v}(t) & =\int \bar{a}(t) d t=2 t \hat{\imath}+\bar{C} \\
\bar{v}(1) & =2 \hat{\imath}+\bar{C}=2 \hat{\imath}+\hat{\jmath}+\hat{k} \\
\bar{C} & =\hat{\jmath}+\hat{k}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\bar{v}(t) & =2 t \hat{\imath}+\hat{\jmath}+\hat{k} \\
\bar{r}(t) & =\int \bar{v}(t) d t=t^{2} \hat{\imath}+t \hat{\jmath}+t \hat{k}+\bar{D} \\
\bar{r}(1) & =1 \hat{\imath}+1 \hat{\jmath}+1 \hat{k}+\bar{D}=\overline{0} \\
\bar{D} & =-1 \hat{\imath}-1 \hat{\jmath}-1 \hat{k}
\end{aligned}
$$

And so finally

$$
\bar{r}(t)=\left(t^{2}-1\right) \hat{\imath}+(t-1) \hat{\jmath}+(t-1) \hat{k}
$$

5. Let's find the line through $(1,2,3)$ which is perpendicular to the plane and see where it hits the plane. If it's perpendicular it has the vector $\bar{L}=\bar{N}=2 \hat{\imath}+3 \hat{\jmath}+1 \hat{k}$ and so the line is

$$
\begin{aligned}
& x=1+2 t \\
& y=2+3 t \\
& z=3+t
\end{aligned}
$$

Hitting the plane means satisfying the equation:

$$
\begin{aligned}
2(1+2 t)+3(2+3 t)+(3+t) & =8 \\
2+4 t+6+9 t+3+t & =8 \\
14 t & =-3 \\
t & =-3 / 14
\end{aligned}
$$

So this is at the point

$$
\begin{aligned}
& x=1+2(-3 / 14) \\
& y=2+3(-3 / 14) \\
& z=3+(-3 / 14)
\end{aligned}
$$

