Math 241 Sections 01** Exam 1 Sample 4 Solutions

1. Given the following data:

$$
\begin{aligned}
& P=(-1,0,3) \\
& Q=(2,5,5) \\
& \bar{a}=1 \hat{\imath}+2 \hat{\jmath}+0 \hat{k} \\
& \bar{b}=3 \hat{\imath}+2 \hat{\jmath}+1 \hat{k}
\end{aligned}
$$

(a) We use:

$$
2\left(\frac{\overrightarrow{P Q}}{\|\overrightarrow{P Q}\|}\right)=2\left(\frac{3 \hat{\imath}+5 \hat{\jmath}+2 \hat{k}}{\sqrt{9+25+4}}\right)
$$

(b) We have:

$$
\begin{aligned}
\bar{a} \cdot \bar{b} & =\|\bar{a}\|\|\mid \bar{b}\| \cos \theta \\
7 & =\sqrt{1+4+0} \sqrt{9+4+1} \cos \theta \\
\cos \theta & =\frac{7}{\sqrt{5} \sqrt{14}}
\end{aligned}
$$

(c) We have:

$$
\begin{aligned}
\operatorname{Pr}_{\bar{a}} \bar{b} & =\left(\frac{\bar{a} \cdot \bar{b}}{\bar{a} \cdot \bar{a}}\right) \bar{a} \\
& =\left(\frac{7}{5}\right)(1 \hat{\imath}+2 \hat{\jmath}+0 \hat{k})
\end{aligned}
$$

2. (a) The line has $\bar{L}=3 \hat{\imath}+0 \hat{\jmath}+1 \hat{k}$ and $P=(-2,-2,3)$. We have $Q=(3,2,1)$ off the line. Therefore

$$
\overrightarrow{P Q}=5 \hat{\imath}+4 \hat{\jmath}-2 \hat{k}
$$

and so the distance is:

$$
\begin{aligned}
\text { Dist } & =\frac{\|\bar{L} \times \overrightarrow{P Q}\|}{\|\bar{L}\|} \\
& =\frac{\|-4 \hat{\imath}+11 \hat{\jmath}+12 \hat{k}\|}{\sqrt{9+1+0}} \\
& =\frac{\sqrt{16+121+144}}{\sqrt{9+1+0}}
\end{aligned}
$$

(b) We have

$$
\begin{aligned}
\bar{r}^{\prime}(t) & =-\sin (t) \hat{\imath}+3 \cos (t) \hat{\jmath} \\
\bar{T}(\pi / 4) & =\frac{\bar{r}^{\prime}(\pi / 4)}{\left\|\bar{r}^{\prime}(\pi / 4)\right\|} \\
& =\frac{-\sin (\pi / 4) \hat{\imath}+3 \cos (\pi / 4) \hat{\jmath}}{\|-\sin (\pi / 4) \hat{\imath}+3 \cos (\pi / 4) \hat{\jmath}\|} \\
& =\frac{-\frac{\sqrt{2}}{2} \hat{\imath}+\frac{3 \sqrt{2}}{2} \hat{\jmath}}{\left\|-\frac{\sqrt{2}}{2} \hat{\imath}+\frac{3 \sqrt{2}}{2} \hat{\jmath}\right\|} \\
& =\frac{-\frac{\sqrt{2}}{2} \hat{\imath}+\frac{3 \sqrt{2}}{2} \hat{\jmath}}{\sqrt{\frac{1}{2}+\frac{9}{2}}} \\
& =\frac{-\frac{\sqrt{2}}{2} \hat{\imath}+\frac{3 \sqrt{2}}{2} \hat{\jmath}}{\sqrt{5}} \\
& =\frac{\sqrt{10}}{10} \hat{\imath}+\frac{3 \sqrt{10}}{10} \hat{\jmath}
\end{aligned}
$$

3. (a) We have

(b) We have three pieces:

$$
\begin{gathered}
\bar{r}(t)=t \hat{\imath}+\left(4-t^{2}\right) \hat{\jmath} \quad \text { with } 0 \leq t \leq 2 \\
\bar{r}(t)=(2-t) \hat{\imath}+0 \hat{\jmath} \quad \text { with } 0 \leq t \leq 2 \\
\bar{r}(t)=0 \hat{\imath}+t \hat{\jmath} \quad \text { with } 0 \leq t \leq 4
\end{gathered}
$$

4. (a) If it's perpendicular to both then we can use the cross product so

$$
\bar{L}=(2 \hat{\imath}+2 \hat{\jmath}+0 \hat{k}) \times(3 \hat{\imath}-1 \hat{\jmath}+2 \hat{k})=4 \hat{\imath}-4 \hat{\jmath}-8 \hat{k}
$$

and so we have

$$
\begin{aligned}
& x=1+4 t \\
& y=2-4 t \\
& z=3-8 t
\end{aligned}
$$

(b) The line hits the plane when

$$
\begin{aligned}
2(2 t+2)+(5-t)-(t+10) & =1 \\
4 t+4+5-t-t-10 & =1 \\
2 t & =2 \\
t & =1
\end{aligned}
$$

and this occurs at the point given by

$$
\bar{r}(1)=4 \hat{\imath}+4 \hat{\jmath}+11 \hat{k}
$$

which is
5. (a) We have

(b) We have

$$
\bar{r}^{\prime}(t)=2 t \hat{\imath}+3 t^{2} \hat{\jmath}+0 \hat{k}
$$

and so the length is

$$
\int_{0}^{1}\left\|\bar{r}^{\prime}(t)\right\| d t=\int_{0}^{1} \sqrt{4 t^{2}+9 t^{4}+0} d t
$$

