Math 241 Exam 3 Sample 3 Solutions

1. (a) The easiest method would be $\bar{r}(r, \theta)=r \cos \theta \hat{\imath}+r \sin \theta \hat{\jmath}+\left(9-r^{2}\right) \hat{k}$ with $0 \leq r \leq 3$ and $0 \leq \theta \leq 2 \pi$.
(b) Since $z=4-y^{2}$ this shape is a parabolic sheet as shown:

(c) We need to change this to polar first since the integrand is not integrable with respect to y or x. The region R is the quarter disk of radius 1 in the first quadrant and so we have:

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \sin \left(x^{2}+y^{2}\right) d y d x & =\int_{0}^{\pi / 2} \int_{0}^{1} \sin \left(r^{2}\right) r d r d \theta \\
& =\int_{0}^{\pi / 2}-\left.\frac{1}{2} \cos \left(r^{2}\right)\right|_{0} ^{1} d \theta \\
& =\int_{0}^{\pi / 2}-\frac{1}{2}\left(\cos (1)-\frac{1}{2} \cos (0)\right) d \theta \\
& =\int_{0}^{\pi / 2} \frac{1}{2}(1-\cos (1)) d \theta \\
& =\left.\frac{1}{2} \theta(1-\cos (1))\right|_{0} ^{\pi / 2} \\
& =\frac{1}{2}(0)(1-\cos (1))-\frac{1}{2}(\pi / 2)(1-\cos (1))
\end{aligned}
$$

2. (a) The picture is:

The lines meet when $y=x$ meets $y=\frac{1}{2} x+4$ at $x=8$. Thus the integral would be $\int_{0}^{8} \int_{x}^{\frac{1}{2} x+4} y d y d x$
(b) The picture is:

The circles meet when $r=1$ meets $r=2 \cos \theta$ which is when $\cos \theta=\frac{1}{2}$ or $\theta= \pm \frac{\pi}{3}$. Thus the integral is $\int_{-\pi / 3} \pi / 3 \int_{1}^{2 \cos \theta}(r \cos \theta)(r \sin \theta) r d r d \theta$.
3. (a) The picture is:

(b) The picture is:

(c) We have $z=4-\sqrt{x^{2}+y^{2}}=4-\sqrt{r^{2}}=4-r$.
4. (a) The picture is:

The iterated integral is

$$
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{0}^{9-x^{2}} z d z d y d x
$$

(b) The picture is:

The iterated integral is

$$
\int_{0}^{\pi / 2} \int_{\pi / 6}^{\pi / 3} \int_{0}^{3} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

5. We rewrite the ellipse as $(2 x)^{2}+(3 y)^{2}=36$ and subsitute $u=2 x$ and $v=3 y$. The new region S is then inside the circle $u^{2}+v^{2}=26$.
The pictures are:

Then $x=u / 2$ and $y=v / 3$ so that

$$
J=\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 3
\end{array}\right]=1 / 6
$$

. So we have

$$
\iint_{R} x d A=\iint_{S} \frac{1}{2} u|1 / 6| d A=\frac{1}{12} \iint_{S} u d A
$$

which we then parametrize in polar

$$
=\frac{1}{12} \int_{0}^{2 \pi} \int_{0}^{6} r \cos \theta r d r d \theta
$$

