Stat 400, section 6.2 Methods of Point Estimation

notes by Tim Pilachowski
"A point estimate of a parameter θ is a single number that can be regarded as a sensible value for $\theta \ldots$ The selected statistic is called the point estimator of θ." The symbol $\hat{\theta}$ is used for both the random variable and the calculated value of the point estimate.
Ideally, the point estimator $\hat{\theta}$ is unbiased, i.e. $E(\hat{\theta})=\theta$. In words, the sampling distribution based on the statistic has an expected value equal to the actual (but unknown) population parameter.
When we have a choice between point estimators which are all unbiased, how do we pick the one we should use? We already have one criterion. When considering the population parameter "mean $=\mu$ ", both random variable X and random variable \bar{X} are unbiased. However, since the variance of $\left.X \quad V(X)=\sigma_{X}^{2}\right\rfloor$ is larger than the variance of $\bar{X}\left[V(\bar{X})=\frac{\sigma_{X}^{2}}{n}\right]$, the sample statistic x has a lower probability of being representative of the population than the sample statistic \bar{x}.
More importantly, how do we find a possibility in the first place? Section 6.2 formalizes this choice process by looking at two methods of picking and estimator: a) the method of moments and b) the method of maximum likelihood.

a) the method of moments

Definition 1. Given a random variables $X_{1}, X_{2}, \ldots X_{n}$ and positive integer k_{s} the $k^{\text {th }}$ population moment of X is

$$
m_{k}(X)=E\left(X^{k}\right), \quad k \geq 1
$$

Thus, $m_{1}(X)=E(X)=\mu$ and $m_{2}(X)=E\left(X^{2}\right)=\sigma^{2}+\mu^{2}$. [For the derivation of the second assertion, see Lecture 6.1c.]
Definition 2. Given random sample values $x_{1}, x_{2}, \ldots x_{n}$, from the sample space of a random variable X and nonnegative integer k_{s} the $k^{\text {th }}$ sample moment S_{k} is

$$
S_{k}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{k}, \quad k \geq 1 .
$$

Thus, $S_{1}=\bar{x}$.
It is important to note that the the $k^{\text {th }}$ population moments of X are functions of parameter θ while the $k^{\text {th }}$ sample moment S_{k} is not. Rather S_{k} is an average sum of powers of the sample values x_{i}.
Here's how to implement the method of moments: a) Set the $k^{\text {th }}$ population moment of $X, m_{k}(X)$, equal to the $k^{\text {th }}$ sample moment S_{k}, then b) solve the resulting equation for θ. That is, solve

$$
m_{k}(X)=S_{k}, \quad 1 \leq k \leq \infty .
$$

Lecture 6.1c Example F revisited. You toss a coin n times. Define a random variable $W=0$ if a toss is tails, and $\mathrm{W}=1$ if a toss is heads. Use the method of moments to determine an estimator $\hat{\theta}$ for the population parameter "proportion of successes". [Although this scenario is described in terms of flipping a coin, the mathematics would be the same for any Bernoulli/binomial distribution.]

For each toss, we have a binomial probability density function.

w	0	1
$P(W=w)$	$1-p$	p

Example A (see Lecture 6.1b). Use the method of moments to determine estimators for parameters mean, μ, and variance, σ^{2}, for random variable X for which we know a probability distribution.

A better estimator would be sample variance $s^{2}=\frac{1}{n-1}\left[\sum x_{i}{ }^{2}-\frac{1}{n}\left(\sum x_{i}\right)^{2}\right]$ because (as demonstrated in Lecture 6.1b) it is unbiased.
Dr. Millson develops a moment estimator for a uniform distribution (Lecture $23 \mathrm{pp} .9-15$). The text covers exponential, gamma and negative binomial distributions (Examples 6.12-6.14).

b) the method of maximum likelihood.

Random variables $X_{1}, X_{2}, \ldots, X_{n}$ form a (simple) random sample of size n if they meet two (important) requirements:

1. The X_{i} 's are independent random variables.
2. Every X_{i} has the same probability distribution.

Given random sample values $x_{1}, x_{2}, \ldots x_{n}$, from the sample space of a discrete random variable X with a probability mass function $p_{X}(x ; \theta)$ [the pmf is a function of unknown parameter θ], what is

$$
P=P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots X_{n}=x_{n}\right) ?
$$

In other words, what is the probability of getting (by random chance) the sample we actually got?
Since the X_{i} 's are independent,

$$
P=P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots X_{n}=x_{n}\right)=P\left(X_{1}=x_{1}\right) * P\left(X_{2}=x_{2}\right) * \ldots * P\left(X_{n}=x_{n}\right) .
$$

Since every X_{i} has the same probability distribution,

$$
P=P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots X_{n}=x_{n}\right)=p_{X}\left(x_{1} ; \theta\right) * p_{X}\left(x_{2} ; \theta\right) * \ldots * p_{X}\left(x_{n} ; \theta\right)
$$

Because the sample values $x_{1}, x_{2}, \ldots x_{n}$ are numbers, P is a function only of parameter θ, the likelihood function, which we will designate $L(\theta)$. We want to find the value of θ that maximizes $L(\theta)$. The maximum likelihood estimator $\hat{\theta}$ will be a critical value, such that $L^{\prime}(\hat{\theta})=0$.
short side trip: logarithmic differentiation
Let $h(\theta)=\ln [L(\theta)]$. (Domain is not a problem because $0 \leq p_{X}\left(x_{i} ; \theta\right) \leq 1$, and we aren't interested in occasions when probability equals 0 .) Then by the chain rule,

$$
\begin{aligned}
\frac{d}{d x}[h(\theta)] & =\frac{d}{d x}(\ln [L(\theta)]) \\
h^{\prime}(\theta) & =\frac{1}{L(\theta)} * L^{\prime}(\theta)
\end{aligned}
$$

Here's the important thing: h and L share the same critical values. Also, since $a<b \Leftrightarrow \ln (a)<\ln (b)$, order is preserved and both h and L will have a maximum at the same critical value!

To use the method of maximum likelihood,
Let $h(\theta)=\ln [L(\theta)]$.
Find $h^{\prime}(\theta)$.
Set $h^{\prime}(\theta)=0$ and solve for θ in terms of $x_{1}, x_{2}, \ldots, x_{n}$.
Lecture 6.1c Example F revisited. You toss a coin n times. Define a random variable $Y=$ proportion of heads. Use the method of maximum likelihood to determine an estimator $\hat{\theta}$ for the population parameter. [Although this scenario is described in terms of flipping a coin, the mathematics would be the same for any Bernoulli/binomial distribution.]
We're looking for an estimator of the population parameter p (population proportion, or probability of success).
Recall from Lecture 6.1c, we have $Y=\frac{\text { number of heads }}{\text { number of tosses }}=\frac{X}{n}=\frac{W_{1}+W_{2}+\ldots+W_{n}}{n}=\bar{W}=p$.
That is, for each toss, we have a binomial probability density function.

w	0	1
$P(W=w)$	$1-p$	p

0 \& otherwise\end{array}\right.\)

First step: Write out and simplify the likelihood function using our generic parameter θ.

$$
\begin{aligned}
L(\theta) & =p_{W}\left(w_{1} ; \theta\right) * p_{W}\left(w_{2} ; \theta\right) * \ldots * p_{W}\left(w_{n} ; \theta\right) \\
& =\theta^{w_{1}}(1-\theta)^{1-w_{1}} * \theta^{w_{2}}(1-\theta)^{1-w_{2}} * \ldots * \theta^{w_{n}}(1-\theta)^{1-w_{n}} \\
& =\theta^{w_{1}} \theta^{w_{2}} \ldots \theta^{w_{n}} *(1-\theta)^{1-w_{1}}(1-\theta)^{1-w_{2}} \ldots(1-\theta)^{1-w_{n}} \\
& =\theta^{w_{1}+w_{2}+\ldots+w_{n}} *(1-\theta)^{n-\left(w_{1}+w_{2}+\ldots+w_{n}\right)}
\end{aligned}
$$

Second step: Create $h(\theta)$ and simplify.

$$
\begin{aligned}
h(\theta) & =\ln [L(\theta)] \\
& =\ln \left[\theta^{w_{1}+w_{2}+\ldots+w_{n}} *(1-\theta)^{n-\left(w_{1}+w_{2}+\ldots+w_{n}\right)}\right] \\
& =\ln \left[\theta^{w_{1}+w_{2}+\ldots+w_{n}}\right]+\ln \left[(1-\theta)^{n-\left(w_{1}+w_{2}+\ldots+w_{n}\right)}\right] \\
& =\left(w_{1}+w_{2}+\ldots+w_{n}\right) \ln [\theta]+\left(n-\left(w_{1}+w_{2}+\ldots+w_{n}\right)\right) \ln [(1-\theta)]
\end{aligned}
$$

notes on the proof:

Final step: Differentiate $h(\theta)$, set equal to 0 , and solve for θ.
notes on the proof:

$$
\begin{aligned}
& h^{\prime}(\theta)=\left(w_{1}+w_{2}+\ldots+w_{n}\right) * \frac{1}{\theta}+\left(n-\left(w_{1}+w_{2}+\ldots+w_{n}\right)\right) * \frac{-1}{1-\theta} \\
& 0=\frac{w_{1}+w_{2}+\ldots+w_{n}}{\theta}-\frac{n-\left(w_{1}+w_{2}+\ldots+w_{n}\right)}{1-\theta} \\
& \frac{n-\left(w_{1}+w_{2}+\ldots+w_{n}\right)}{1-\theta}=\frac{w_{1}+w_{2}+\ldots+w_{n}}{\theta} \\
& \theta\left[n-\left(w_{1}+w_{2}+\ldots+w_{n}\right)\right]=(1-\theta)\left(w_{1}+w_{2}+\ldots+w_{n}\right) \\
& \theta * n-\theta\left(w_{1}+w_{2}+\ldots+w_{n}\right)=w_{1}+w_{2}+\ldots+w_{n}-\theta\left(w_{1}+w_{2}+\ldots+w_{n}\right) \\
& \theta * n=w_{1}+w_{2}+\ldots+w_{n} \\
& \theta=\frac{w_{1}+w_{2}+\ldots+w_{n}}{n} \\
& \hat{\theta}=\frac{\text { number of heads }}{n}=\hat{p}
\end{aligned}
$$

Example B. A random variable X has an exponential probability distribution. Use the method of maximum likelihood to determine an estimator for parameter λ.

Example B extended. A random variable X has an exponential probability distribution. Determine an estimator for parameter λ^{2}.

We'll need the Invariance Principle:
Let $\hat{\theta}_{1}, \hat{\theta}_{2}, \ldots \hat{\theta}_{n}$ be the maximum likelihood estimators for parameters $\theta_{1}, \theta_{2}, \ldots \theta_{n}$. Then the maximum likelihood estimator of any function $h\left(\theta_{1}, \theta_{2}, \ldots \theta_{n}\right)$ of these parameters is the function $h\left(\hat{\theta}_{1}, \hat{\theta}_{2}, \ldots \hat{\theta}_{n}\right)$ of the maximum likelihood estimators.

