
Stat 400, section 6.2  Methods of Point Estimation 
notes by Tim Pilachowski 
 

 “A point estimate of a parameter θ is a single number that can be regarded as a sensible value for θ … The 

selected statistic is called the point estimator of θ.” The symbol θ̂  is used for both the random variable and the 

calculated value of the point estimate. 
 

Ideally, the point estimator θ̂  is unbiased, i.e. ( ) θθ =ˆE . In words, the sampling distribution based on the 

statistic has an expected value equal to the actual (but unknown) population parameter. 
 
 

When we have a choice between point estimators which are all unbiased, how do we pick the one we should 

use? We already have one criterion. When considering the population parameter “mean = µ”, both random 

variable X and random variable X  are unbiased. However, since the variance of X  ( )[ ]2
XXV σ=  is larger than 

the variance of X  ( )
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2σ
, the sample statistic x has a lower probability of being representative of the 

population than the sample statistic x . 
 

More importantly, how do we find a possibility in the first place? Section 6.2 formalizes this choice process by 

looking at two methods of picking and estimator: a) the method of moments and b) the method of maximum 

likelihood. 
 

a) the method of moments 
 

Definition 1. Given a random variables X1, X2, … Xn and positive integer k¸ the k
th

 population moment of X is 

( ) ( ) 1, ≥= kXEXm k
k . 

Thus, ( ) ( ) µ== XEXm1  and ( ) ( ) 222
2 µσ +== XEXm . [For the derivation of the second assertion, see 

Lecture 6.1c.] 
 

Definition 2. Given random sample values x1, x2, … xn, from the sample space of a random variable X and non-

negative integer k¸ the k
th

 sample moment Sk is 
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Thus, xS =1 . 
 

It is important to note that the the k
th

 population moments of X are functions of parameter θ while the k
th

 sample 

moment Sk is not. Rather Sk is an average sum of powers of the sample values xi. 
 

Here’s how to implement the method of moments: a) Set the k
th

 population moment of X, ( )Xmk , equal to the 

k
th

 sample moment Sk, then b) solve the resulting equation for θ. That is, solve 

( ) ∞≤≤= kSXm kk 1, . 
 

Lecture 6.1c Example F revisited. You toss a coin n times. Define a random variable W = 0 if a toss is tails, and 

W = 1 if a toss is heads. Use the method of moments to determine an estimator θ̂  for the population parameter 

“proportion of successes”. [Although this scenario is described in terms of flipping a coin, the mathematics 

would be the same for any Bernoulli/binomial distribution.] 
 

For each toss, we have a binomial probability density function. 
 

 w 0 1 

 P(W = w) 1 – p p 
 

 

 

 



Lecture 6.1c Example F. (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example A (see Lecture 6.1b). Use the method of moments to determine estimators for parameters mean, µ, and 

variance, σ 2, for random variable X for which we know a probability distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A better estimator would be sample variance ( ) 
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s  because (as demonstrated in 

Lecture 6.1b) it is unbiased. 
 

Dr. Millson develops  a moment estimator for a uniform distribution (Lecture 23 pp. 9-15). The text covers 

exponential, gamma and negative binomial distributions (Examples 6.12-6.14). 
 



b) the method of maximum likelihood. 
 

Random variables X1, X2, … , Xn form a (simple) random sample of size n if they meet two (important) 

requirements: 
 

1. The Xi’s are independent random variables. 

2. Every Xi has the same probability distribution. 
 

Given random sample values x1, x2, … xn, from the sample space of a discrete random variable X with a 

probability mass function ( )θ;xpX  [the pmf is a function of unknown parameter θ ], what is 

P = P(X1 = x1, X2 = x2, … Xn = xn)? 
 

In other words, what is the probability of getting (by random chance) the sample we actually got? 

Since the Xi’s are independent, 

( ) ( ) ( ) ( )nnnn xXPxXPxXPxXxXxXPP =∗∗=∗====== KK 22112211 ,, . 
 

Since every Xi has the same probability distribution,  

( ) ( ) ( ) ( )θθθ ;;;,, 212211 nXXXnn xpxpxpxXxXxXPP ∗∗∗===== KK . 
 

Because the sample values x1, x2, … xn are numbers, P is a function only of parameter θ, the likelihood function, 

which we will designate L(θ). We want to find the value of θ that maximizes L(θ). The maximum likelihood 

estimator θ̂  will be a critical value, such that ( ) 0ˆ =′ θL . 

 

short side trip: logarithmic differentiation 

Let ( ) ( )[ ]θθ Lh ln= . (Domain is not a problem because ( ) 1;0 ≤≤ θiX xp , and we aren’t interested in occasions 

when probability equals 0.)  Then by the chain rule, 
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Here’s the important thing: h and L share the same critical values. Also, since ( ) ( )baba lnln <⇔< , order is 

preserved and both h and L will have a maximum at the same critical value! 

 

To use the method of maximum likelihood, 

Let ( ) ( )[ ]θθ Lh ln= . 

Find ( )θh′ . 

Set ( ) 0=′ θh  and solve for θ in terms of x1, x2, … , xn. 

 

Lecture 6.1c Example F revisited. You toss a coin n times. Define a random variable Y = proportion of heads. 

Use the method of maximum likelihood to determine an estimator θ̂  for the population parameter. [Although 

this scenario is described in terms of flipping a coin, the mathematics would be the same for any 

Bernoulli/binomial distribution.] 
 

We’re looking for an estimator of the population parameter p (population proportion, or probability of success). 
 

Recall from Lecture 6.1c, we have pW
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That is, for each toss, we have a binomial probability density function. 
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First step: Write out and simplify the likelihood function using our generic parameter θ. 

 notes on the proof: 

( ) ( ) ( ) ( )θθθθ ;;; 21 nWWW wpwpwpL ∗∗∗= K  

 ( ) ( ) ( ) nn wwwwww −−− −∗∗−∗−= 111
111 2211 θθθθθθ K  

 ( ) ( ) ( ) nn wwwwww −−− −−−∗= 111
111 2121 θθθθθθ KK  

 ( ) ( )nn wwwnwww +++−+++ −∗= KK 2121 1 θθ  

Second step: Create h(θ) and simplify. 

 notes on the proof: 

( ) ( )[ ]θθ Lh ln=  

 ( ) ( )[ ]nn wwwnwww +++−+++ −∗= KK 2121 1ln θθ  

 [ ] ( ) ( )[ ]nn wwwnwww +++−+++ −+= KK 2121 1lnln θθ  

 ( ) [ ] ( )( ) ( )[ ]θθ −+++−++++= 1lnln 2121 nn wwwnwww KK  

Final step: Differentiate h(θ), set equal to 0, and solve for θ . 

 notes on the proof: 
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Example B. A random variable X has an exponential probability distribution. Use the method of maximum 

likelihood to determine an estimator for parameter λ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example B extended. A random variable X has an exponential probability distribution. Determine an estimator 

for parameter λ2
. 

 

We’ll need the Invariance Principle: 

Let nθθθ ˆ,ˆ,ˆ
21 K  be the maximum likelihood estimators for parameters nθθθ K,, 21 . Then the maximum 

likelihood estimator of any function ( )nh θθθ K,, 21  of these parameters is the function ( )nh θθθ ˆ,ˆ,ˆ
21 K  of the 

maximum likelihood estimators. 

 


