
Stat 401, section 5.4  The Central Limit Theorem  
notes by Tim Pilachowski 
 

If you haven’t done it yet, go to the Stat 401 page and download the handout 5.4 supplement Central Limit 

Theorem. The homework (both practice and hand-in) homework for section 5.4 will be from that supplement. 
 

From section 5.3: 
 

Random variables X1, X2, … , Xn form a (simple) random sample of size n if they meet two (important) 

requirements: 
 

1. The Xi’s are independent random variables. 

2. Every Xi has the same probability distribution. 
 

Data is collected from the sample, i.e., the random variables X1, X2, … , Xn each receive values x1, x2, … , xn. 

These values are used to calculate sample statistics. The sample statistics we’ll be most interested in are: 

1. The sample total T0 = X1 + X2 + …  + Xn. 

2. The sample mean 0
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Note that T0, X  and S2 are themselves random variables. Sections 5.3 and 5.4 focus on what the probability 

distributions of these random variables look like, and what they can tell us about the overarching population’s 

distribution.  
 

Theory 

Probability models exist in a theoretical world where everything is known. If you constructed every possible 

sample of a specified size n from a given population (Example 1 in the supplement), or were able to toss a coin  

an infinite number of times (Example 2 in the supplement), you would create what statisticians call a sampling 

distribution. 
 

In the Examples below, we’ll use a hypothetical population Ψ consisting of the numbers 10, 20, 30, 40 and 50. 

The parameter and statistic we’ll consider first is the mean. 
 

Example A-1: Calculate the mean and standard deviation of a population Ψ which consists of elements from the 

set {10, 20, 30, 40, 50} with probabilities given in the table below. 
 

X 10 20 30 40 50 

P(X = x) 0.4 0.2 0.2 0.0 0.2 

 

 

 

 

 

Example A-2: Construct a histogram for population Ψ. 

 

 

 

 

 

 

 

 

We would get the same histogram if we were to consider all possible samples of size n = 1 that could be taken 

from the population Ψ and calculated each sample’s expected value (mean). 



 

Example A-3: Construct all possible samples of size n = 2 that can be made from the elements of Ψ, designate 

the probability of each being picked, and calculate each sample’s expected value (mean). 
 

sample P x  sample P x  sample P x  sample P x  

10, 10   20, 10   30, 10   50, 10   

10, 20   20, 20   30, 20   50, 20   

10, 30   20, 30   30, 30   50, 30   

10, 50   20, 50   30, 50   50, 50   

 

Example A-4: Draw the histogram for the sampling distribution from Example A-3. 
 

X  10 15 20 25 30 35 40 45 50 

( )xXP =           

 

 

 

 

 

 

 

 
 

Example A-5: Calculate mean and standard deviation of the sampling distribution of Ψ for sample size n = 2. 
 

Mean of sampling distribution = ( )XE  = 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =++++++++ 04.0500.04508.04008.03520.03008.02520.02016.01516.010  

 

Variance of sampling distribution = ( )XV  = 
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Standard deviation of sampling distribution ( ) ===
X

X σσ standard error = 
 

Theory: 

 
 

 

 

 

 

 

 

 

 

 

 

 

(Example A-6 is found on the next page.) 



Example A-6: Draw the histogram and calculate the mean and standard deviation of the sampling distribution of 

Ψ for sample size n = 4. 
 

Mean of sampling distribution = ( )XE  = 
 

Variance of sampling distribution = ( )XVar  = 
 

Standard deviation of sampling distribution ( ) ===
X

X σσ standard error = 

 

The histogram for this sampling distribution (sample size n = 4) looks like this. 
 

 
 

Example A-7: On your own, explore the histogram for sampling distributions of Ψ for various sample sizes. 

(That is, conduct a series of simulation experiments using various values of n.) 
 

The supplement provides two sources, along with illustrations: 

http://www.chem.uoa.gr/applets/AppletCentralLimit/Appl_CentralLimit2.html 

http://www.intuitor.com/statistics/CentralLim.html. 
 

Notes following Examples A: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Proofs for conclusions about samples of any size n are on the next page.) 



In Example A-1 we found E(X) and σ (X). In Examples A-5 and A-6, we found that ( ) ( )XEXE =  and 

( ) ( )

n

X
X

σ
σ = . Will the same be true for any sample size n? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Example D revisited. Distribution of ACT scores is approximately normal. In 2010 mean score for the ACT 

= 22.6, with a standard deviation of 4.3. What is the probability that a single student chosen at random has an 

ACT score between 22 and 24?   answer: 0.1850 

(source: Usefulness of High School Average and ACT Scores in Making College Admission Decisions, retrieved from 

www.act.org/research/researchers/reports/pdf/ACT_RR2010-2.pdf.) 

 

 

 

 

 

 

 

 

 

 

 

Theory: sampling distribution for a normally distributed population 

 

 

 

 

 

 

 

 

 

 



4.3 Example D – a new question. Distribution of ACT scores is approximately normal. In 2010 mean score for 

the ACT = 22.6, with a standard deviation of 4.3. a) If a random sample of 50 students who took the ACT is 

selected, what is the shape of the resulting sampling distribution? b) What are ( )XE  and 
X

σ ? c) What is the 

probability that the sample mean is between 22 and 24?   answers: normal; 22.6, ≈ 0.6081; 0.8282 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is fine for a population known to be normally distributed, but can we make any statements about sampling 

distributions from a population which may not (or definitely do not) have a normal probability distribution? 
 

Recall the various versions of Example A done earlier. Population Ψ did not have a normal distribution, and 

was not even symmetric. However, the shape of the sampling distribution took on a shape close to that of a 

normal distribution as n increased. 
 

Enter the Central Limit Theorem: 
 

Given a population with mean µX and standard deviation σ X: 
 

1) As the sample size n increases, or as the number of trials n approaches infinite, the shape of a sampling 

distribution becomes increasingly like a normal distribution. 
 

2) The mean of sampling distribution = the mean of the population, ( ) XXE µ= . 
 

3) The standard deviation of sampling distribution = standard error, 
n

X
X

σ
σ = . 

The proof of (1) in the Central Limit Theorem requires “moment generating functions” which we do not have 

yet, and which we may (but probably won’t) get to before the end of the semester. 
 

For statistics, a sample size of 30 is usually large enough to use the normal distribution probability table for 

hypothesis tests and confidence intervals. For Lecture examples, and for homework exercises from the handout, 

we’ll use the normal distribution table to find various probabilities for sample statistics. 
 

The Central Limit Theorem tells us, in short, that a sampling distribution is often close to a normal distribution. 
 

What does this mean for random sampling? It tells us that 68% of the time, a random sample will give us a 

result—a statistic—within 1 standard deviation of the “true” parameter. We would expect that 95% of the time, 

a random sample will give a statistic within 2 standard deviations of the population parameter, and 99.7% of the 

time, a random sample will give a statistic within 3 standard deviations of the population parameter. 
 

In statistics, the Central Limit Theorem is the justification for constructing confidence intervals and conducting 

hypothesis tests. 
 



Example B. A population has mean µ = 150 and standard deviation σ  = 22. For a random sample of size 47, 

calculate a) the expected value of the sample mean and b) the standard error. Find the following probabilities: 

c) ( )153145 << XP  and d) ( )154>XP . 

answers: 150, 
47

22 , 0.7644, 0.1056 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
WARNING: Example B is not like those we did in section 4.3! That is, it does not find probabilities for single 

values of X for a normally-distributed population, which uses 
X

XX
Z

σ
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= . (In fact, because we do not know 

the probability distribution, we cannot specify probabilities for individual subjects.) 
 

Rather, Example B looks at one sample and finds probabilities involving the mean of that sample, X , 

considered as part of all the hypothetical samples which could have been constructed (the sampling 

distribution). Therefore, for example B we used 
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Also, in some homework exercises, you’ll need to use the skills from previous sections to determine µX and σ X. 
 



Example C. A random variable X has probability density function ( )
( )


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a) What are the expected value and standard deviation for a single randomly-chosen value of X? 

b) You randomly select a sample of size n = 100. What is the expected value for the sample mean, ( )XE ? What 

is the standard error, Xσ , for the sampling distribution? 

c) What is the probability that a single randomly-chosen subject from this population will exhibit a value of at 

least 0.55? 

d) You randomly select a sample of size n = 100. What is the probability that the sample mean will be at least 

0.55? 

e) You randomly select a sample of size n = 100. There is a 25% probability that the sample mean will be below 

what value? 

answers: 
52

1
2
1 , ; 

520
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1 , ; 0.42525; 0.0125; 0.485 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Go to the supplement for more examples worked out. There are examples similar to each of the 

homework exercises. 


