
Stat 401, section 7.3 Intervals Based on a Normal Population Distribution 
notes by Tim Pilachowski 
 

In sections 7.1 and 7.2, we relied on the Central Limit Theorem for cases where n was “large enough” for the 

shape of sampling distribution to be close enough to a normal distribution to be able to use the normal 

distribution table to answer questions about population parameters. [Recall that our rules of thumb are n > 30 

for situations where σ is known, and n > 40 for situations where σ is not known.] 
 

But, what if the sample size n is not large enough? 
 

Back in section 5.4, we (and the text) noted that, given a population which has a normal distribution, the 

resulting sampling distributions for any sample size n will retain the symmetry of the population distribution. 

We will retain this idea as our basic assumption: “The population of interest is normal, so that X1, …, Xn, 

constitutes a random sample from a normal distribution with both µ and σ unknown.” 
 

[The text notes that we could begin with other types of populations, but that, in practice, researchers assume a 

normally distributed population more often than any other type.] 
 

When n is large enough, the random variable 

n

S

X
Z

µ−
=  has approximately a standard normal distribution.  

That is, the size of n helps to ameliorate the effect of having two random variables present in our transformation 

formula. 
 

When n is small, the additional variability resulting from using S in the denominator means that the sampling 

distribution will be more spread out than a normal distribution is. 
 

At this juncture, we get to rely on work done by others to present a Theorem. 
 

Theorem: When X  is the mean of a random sample of size n from a normal distribution with mean µ, the 

random variable 

n

S

X
T

µ−
=  has a probability distribution called a t distribution with n – 1 degrees of freedom. 

 

In 1908, a worker at the Guinness Brewery in Dublin, Ireland, William Sealy Gosset, published a paper in 

Biometrika using the pseudonym "Student", in which he discusses the "frequency distribution of standard 

deviations of samples drawn from a normal population". Gosset was addressing the issue of small samples, for 

example, the chemical properties of barley where sample sizes might be as low as 3. Gosset’s work was 

developed by Ronald A. Fisher, who called the distribution "Student's distribution" and gave the random 

variable the designation t. 
 

The probability density function of Student’s t-distribution is 
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 where ν is the number of 

degrees of freedom (often abbreviated df) and Γ is the gamma function. (See section 4.4.) 
 

 

The probability density function is symmetric, centered at 0, with an 

overall shape that is similar to the bell shape of a standard normal 

distribution, except that it is a bit lower and wider. As the sample size, and 

number of degrees of freedom, gets larger, the t-distribution approaches 

the standard normal distribution with mean 0 and variance 1. The z curve 

is often called the t-curve with df = ∞. 
 

The t-distribution can be used with any statistic having a bell-shaped 

distribution (i.e., approximately normal). 
 



Why use df = ν = n – 1? The random variable S is calculated using the n deviations ( )XX
i

− . But since 

( ) 0
1

=−∑
=

n

i

i
XX , only n – 1 of these are “freely determined”. 

(An analogy: Think about pulling names from a hat.) 
 

When calculating large sample confidence intervals, we only needed α/2 or α to determine critical values for z.  

When using the t-distribution, we also need to know the degrees of freedom. We’ll use the notations να ,2/t  and 

να ,t  for our needed critical values. 

If we use our basic assumption, that a population has a normal distribution, we can use random variable T to 

develop a confidence interval formula for small sample situations. 

 notes on the proof: 
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Note also the similarity of the small-sample confidence interval formula to the large-sample formula. The only 

difference is the source of the critical value. 
 

Example A: A sample, taken from a population with a normal distribution, has mean = 150 and standard 

deviation = 22. For a random sample of size 28, find the 90% two-sided confidence interval. 
 

work: 

 

 

 

 

interpretation: 

 

 

 

Example B. In their 1992 study of human internal body temperature, Mackowiak, Wasserman and Levine, their 

sample mean, x  = 98.25 with s  = 0.73, led them to a hypothesis that human internal body temperature is lower 

than the conventional 98.6º F. There is reason to believe that human internal body temperature has a normal 

probability distribution. Suppose that their sample size was only 38. Does a one-sided 95% confidence interval 

based on their sample data include 98.6º F? 
 

work: 

 

 

 

 

interpretation: 

 

 
 



In some applications, the goal is to be able to predict a future value rather than to estimate the mean of the 

population. 
 

Proposition: A prediction interval  for a single observation to be selected from a normal population 

distribution, with prediction level 100(1 – α)% is 
n

stx
α/

1
1,2 +∗± ν . 

 

To prove our proposition, we get to rely on work done by others to present another Theorem. 
 

Theorem: The random variable 

n

n

S

XX
T

1

1

1+∗

−
= +  has a t-distribution with n – 1 degrees of freedom. 

 notes on the proof: 
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Example A revisited: A sample, taken from a population with a normal distribution, has mean = 150 and 

standard deviation = 22. For a random sample of size 28, find the 90% two-sided prediction interval. 
 

work: 

 

 

 

interpretation: 

 

 

comparison: 

 

 

 

Three things: 

1) A one-sided prediction interval can be calculated by using critical value ν,αt  and only “+” [upper bound] or 

only “–” [lower bound] in place of “+/–” in the prediction interval formula used above. 

2) A large-sample prediction interval can be calculated by using the formula above with critical z-value in place 

of the critical t-value in the prediction interval formula used above. 

3) How do you know when to use small sample or large sample formulas? 

If the sample size is greater than 40, then the sampling distribution of a statistic will be normal or nearly normal, 

and will be considered a large sample case. 

If the population distribution is normal and the sample size is less than 40, then the sampling distribution of a 

statistic will be a t-distribution, and will be considered a small sample case. 

Also, in practice, if the sampling distribution is symmetric, unimodal, and without outliers, then the sampling 

distribution of a statistic will be close to a t-distribution, and may be considered a small sample case. (Some 

investigation and statistical justification would be necessary in this case.) 
 



Appendix Table A.5 

Critical Values for t Distributions 

 

 
 
 

 αααα    

νννν 0.10 0.05 0.025 0.01 0.005 0.001 0.0005 

1 3.078 6.314 12.706 31.821 63.657 318.31 636.62 

2 1.886 2.920 4.303 6.965 9.925 22.326 31.598 

3 1.638 2.353 3.182 4.541 5.841 10.213 12.924 

4 1.533 2.132 2.776 3.747 4.604 7.173 8.610 

5 1.476 2.015 2.571 3.365 4.032 5.893 6.869 

6 1.440 1.943 2.447 3.143 3.707 5.208 5.959 

7 1.415 1.895 2.365 2.998 3.499 4.785 5.408 

8 1.397 1.860 2.306 2.896 3.355 4.501 5.041 

9 1.383 1.833 2.262 2.821 3.250 4.297 4.781 

10 1.372 1.812 2.228 2.764 3.169 4.144 4.587 

11 1.363 1.796 2.201 2.718 3.106 4.025 4.437 

12 1.356 1.782 2.179 2.681 3.055 3.930 4.318 

13 1.350 1.771 2.160 2.650 3.012 3.852 4.221 

14 1.345 1.761 2.145 2.624 2.977 3.787 4.140 

15 1.341 1.753 2.131 2.602 2.947 3.733 4.073 

16 1.337 1.746 2.120 2.583 2.921 3.686 4.015 

17 1.333 1.740 2.110 2.567 2.898 3.646 3.965 

18 1.330 1.734 2.101 2.552 2.878 3.610 3.922 

19 1.328 1.729 2.093 2.539 2.861 3.579 3.883 

20 1.325 1.725 2.086 2.528 2.845 3.552 3.850 

21 1.323 1.721 2.080 2.518 2.831 3.527 3.819 

22 1.321 1.717 2.074 2.508 2.819 3.505 3.792 

23 1.319 1.714 2.069 2.500 2.807 3.485 3.767 

24 1.318 1.711 2.064 2.492 2.797 3.467 3.745 

25 1.316 1.708 2.060 2.485 2.787 3.450 3.725 

26 1.315 1.706 2.056 2.479 2.779 3.435 3.707 

27 1.314 1.703 2.052 2.473 2.771 3.421 3.690 

28 1.313 1.701 2.048 2.467 2.763 3.408 3.674 

29 1.311 1.699 2.045 2.462 2.756 3.396 3.659 

30 1.310 1.697 2.042 2.457 2.750 3.385 3.646 

32 1.309 1.694 3.037 2.449 2.738 3.365 3.622 

34 1.307 1.691 2.032 2.441 2.728 3.348 3.601 

36 1.306 1.688 2.028 2.434 2.719 3.333 3.582 

38 1.304 1.686 2.024 2.429 2.712 3.319 3.566 

40 1.303 1.684 2.021 2.423 2.704 3.307 3.551 

50 1.299 1.676 2.009 2.403 2.678 3.262 3.496 

60 1.296 1.671 2.000 2.390 2.660 3.232 3.460 

120 1.289 1.658 1.980 2.358 2.617 3.160 3.373 

∞ 1.282 1.645 1.960 2.326 2.576 3.090 3.291 
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tν density curve 


